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Abstract

Let G be a graph with r vertices of degree at least two. Let H
be any graph. Consider r copies of H. Then G @ H denotes the
graph obtained by merging the chosen vertex of each copy of H with
every vertex of degree at least two of G. Let Tp and T4! be any two
caterpillars. Define the first attachment tree Ty = To @ T**. For i >
2, define recursively the i*# attachment tree T; = Ti—y @ T, where
Ti—1 is the (1 — 1)"‘ attachment tree. Here one of the penultimate
vertices of T, ¢ > 1 is chosen for merging with the vertices of degree
at least two of Ti_1, for i > 1. In this paper, we prove that for every
i > 1, the i*? attachment tree T; is graceful and admits « - valuation.
Thus it follows that the famous graceful tree conjecture is true for
this infinite class of i** attachment trees T}s, for all i > 1. Due to
the results of Rosa [21] and El-Zanati et al. [5] the complete graphs
Kacm+1 and complete bipartite graphs Kqm pm, for ¢,p,m,q > 1 can
be decomposed into copies of i** attachment tree T}, for all i > 1,
where m is the size of such i** attachment tree T;.

Key words: Graph labeling, a-valuation, decomposition of graphs,
caterpillar, caterpillar attachment.

1 Introduction

In 1963 at the Smolenice Symposium Ringel [19] conjectured that Kam41,
the complete graph on 2m + 1 vertices, can be decomposed into 2m +1 iso-
morphic copies of a given tree with m edges. Almost during the same time,
Kotzig [11] also conjectured that the complete graph on 2m + 1 vertices
can be cyclically decomposed into 2m + 1 isomorphic copies of a given tree
with m edges. These conjectures led to the introduction of classical graph
labelings by Rosa [21] in 1967. In his classical paper, Rosa introduced g-
labelings as a tool to attack Ringel and Kotzig’s conjectures. This labeling
was later called graceful by Golomb [7] and now this is the term most widely
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used. A function f is called a graceful labeling of a graph G with m edges, if
f is an injection from the vertices of G to the set {0,1,2,...,m} such that
when each edge uv is assigned the label | f(u) — f(v)|, the resulting edge la-
bels are distinct. A graceful labeling f is called an a-valuation of G, if there
exists an integer A such that for each edge e = uwv, either f(u) < A < f(v)
or f(v) £ XA < f(u). A graph admitting an a-valuation must necessarily
be bipartite. In the same paper [21], Rosa proved that if a tree on m edges
is graceful, then Ks,,4+1 can be decomposed into isomorphic copies of this
tree. This theorem led to pose the Ringel-Kotzig-Rosa conjecture that all
trees are graceful. The Ringel-Kotzig-Rosa conjecture, popularly known as
Graceful Tree Conjecture, has been the focus of many papers for about four
decades. So far, no proof of the truth or falsity of the conjecture has been
found. In the absence of a generic proof, one approach used in investigating
the graceful tree conjecture is proving the gracefulness of special classes of
trees. The graceful tree conjecture is shown to be true for all trees with at
most 29 vertices [12]. It is proved that caterpillars (trees whose removal of
all the end vertices produces a path) are graceful [21]. Bermond [1] con-
jectured that all lobsters (trees whose removal of all end vertices produces
a caterpillar) are graceful. Special cases of this conjecture are shown to be
graceful (refer to [14], [22]). A banana tree is a tree obtained by connecting
a vertex v to one leaf of each of any number of stars, where v is not in
any of the stars. Chen et al. [4] have conjectured that all banana trees are
graceful. Some special classes of banana trees were shown to be graceful in
[13] and [2]. Recently, Sethuraman and Jeba Jesintha [16] have shown that
all banana trees are graceful. An olive tree is a collection of k paths joined
in one of the end vertices, where the i** path has length 7. Pastel and
Raynaud [15] has shown that olive trees are graceful. A symmetrical tree is
a rooted tree where all the vertices at the same distance from the root have
the same degree. Bermond and Sotteau have proved that all symmetrical
trees are graceful. Sethuraman and Jeba Jesintha [17] have extended this
result. They have shown that a rooted tree in which every level contains
the vertices that have a degree either & or one (k may vary for each level) is
graceful. Pavel Hrnciar and Alfons Haviar {18] introduced a new technique
of transferring pendant edges incident at a vertex to some other suitable
vertex in a graceful tree, thereby they showed that all tree with at most
diameter five are graceful. Apart from the above families of trees a few
more specific families of trees are shown to be graceful. For an exhaustive
survey on this topic refer the excellent dynamic survey by Gallian [6].

A very few results deal with general method of constructing graceful
trees from known graceful trees. In [20] Stanton and Zarnke and in [10]
Koh et al., have given different methods for constructing graceful trees to
obtain bigger graceful trees from known graceful trees. Burzio and Ferrarese
[3] extended the method of Koh et al., and consequently they have shown
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an interesting and significant result that subdivision of every graceful tree
is graceful. In this paper we introduce a new method of combining graceful
trees called recursive attachment of trees.

Let G be a graph with r vertices of degree at least two. Let H be any
graph. Consider r copies of H. Then G@® H denotes the graph obtained by
merging the chosen vertex of each copy of H with every vertex of degree
at least two of G. Let Tp and T4! be any two caterpillars. Define the
first attachment tree Ty} = Tp @ T, For i > 2, define recursively the "
attachment tree T; = T;_1 ®T4¢, where T, is the (i—1)t* attachment tree.
Here one of the penultimate vertices of T'4¢, ¢ > 1 is chosen for merging
with the vertices of degree at least two of T;_;, for ¢ > 0. In this paper, we
prove that for every ¢ > 1, the i** attachment tree 7T} is graceful and admits
a-valuation. Consequently, due to the results of Rosa [21] (If a graph G
with m edges has an a-valuation, then there exists cyclic decomposition of
the edges of the complete graph Kocm+1 into subgraphs isomorphic to G,
where c is an arbitrary natural number) and due to the result of El-Zanati
and Vanden Eynden [5] (For any non-trivial connected graph G with m
edges, there exists decomposition of the edges of the complete bipartite
graph Kpg mp into subgraphs isomorphic to G, where p and g are arbitrary
positive integers) complete graphs Kocm+1 and certain complete bipartite
graphs Kpg mp, for ¢,p, g, m > 1 into copies isomorphic to any it* recursive
attachment tree Tj, for i > 1.

2 T is graceful

In this section we show that the first attachment tree T} = To @ T4 is
graceful.

In a tree a vertex of degree at least two is called admissible vertez. A
vertex of a caterpillar which has at most one adjacent vertex of degree
greater than or equal to two is called a penultimate vertez. Call one of the
penultimate vertices of a caterpillar as its head and the other penultimate
vertex as its tail.

By an orientation of a graph G we mean an assignment of directions
to all the edges of G. In an orientation of a tree T', a pendant edge is said
to have outward orientation if it is given directions from the end vertex of
the edge of degree greater than one to the other end vertex of degree one.

Let {uj,u2,...,u.} be the set of all admissible vertices of a caterpillar
T. Observe that < uy,us,us,...,ur > is the diametrical path of T, with
u, as the head of T' and u; as the tail of T. Then the orientation of a
caterpillar T is called

1. head to tail orientation if the edges u;u;+1, 1 £ ¢ < 7 — 1 are given
directions from w;4) to u;, for 1 <7 < r — 1 and the pendant edges
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are given outward orientations.

2. tail to head orientation if the edges usui+1, 1 < ¢ < r —1 are given
directions from u; to u;41, for 1 < ¢ < r — 1 and the pendant edges
are given outward orientations.

3. alternate orientation if the edges usuit1, 1 < ¢ < r —1 are given
directions from u; to ui41, for 1 <4 < r—1, when ¢ is odd, while for
2 <4 < r—1 and i even the edges u;u;4+; are given directions from
u;41 to u; and the pendant edges are given outward orientations.

Let Tp denote any caterpillar having alternate orientation. Let
{u1,us,...,ur} be the set of all admissible vertices of To. Let T4 be any
caterplllar Consider r copies of T4 and denote them by T/, 1 < i < 7.
We call a copy of T4, T as odd or even depending on i is odd or even. For
1 <4 < r and i odd, give tail to head orientation, while for 2 < ¢ < r, and
i even, give head to tail orientation. Attach (merge) the head of each copy
TA at each admissible vertex u; of Tp, for 1 < ¢ < r. Then the resulting
tree is the first attachment tree Ty = Tp @ TA

Theorem 1. The first attachment tree Ty admits a-labeling.

Proof. Consider the first attachment tree T3. Let N be the number of edges
of T}.

STEP 1 (INTRODUCTION OF ARTIFICIAL EDGES)

For convenience of the graceful labeling we introduce edges between
certain pairs of vertices of T). More precisely, join the tail of the T/,
say w;, to the tail of the Cl‘iﬂ_l, say w41, by an arc from w; to wiy,, for
2 <i<r—1and i even (we call such arcs as artificial edges). The graph
thus obtained is denoted by Tj". Observe that T} has no odd cycle. Thus
T; is a bipartite graph.

We designate the tail of T as the source of Ty. If r is even, tail of T2
is designated as the sink of Tj and if r is odd, head of T/ is designated as
the sink of T;.

STEP 2 (NAMING OF THE ADMISSIBLE VERTICES IN T}")

Observe that in the construction of T} some of the vertices are labeled
and the other vertices are unlabeled. Consider T;" as the unlabeled graph
by ignoring the labels of the vertices of Tj" if any exists. Now name the tail
of T of T as vy and its unique unlabeled adjacent admissible vertex (with
oub-degree atleast one) by va. In Ty, for i > 1 if an admissible vertex is
named v;, then name its unique unlabeled adjacent admissible vertex (with
out-degree atleast one) by v;41, continue to name all the admissible vertices
and finally name the sink.

STEP 3 (FINDING THE UNIQUE PATH PASSING THROUGH ALL THE

ADMISSIBLE VERTICES OF Tj")
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Observe that in T}" there is a unique (directed) path starting with the
source v; and ending with the sink v; of T;" containing all the admissible
vertices vy, v2, Vs, ..., v;. Denote this path vjvovs ... v, by P.

STEP 4 (DEFINING BIPARTITION OF T})

Let N;(v) denote the set of pendant vertices which are adjacent from
v.

For 1 < ¢ <t—1 and for each v;, define, S,, = {v;} U N1(vit1)

Consider A= | J Sy, and B=Ni(w1) |J Su

1<i<e 1€igt
i odd i even

Note that v; € A or B depends on whether ¢ is odd or even. Clearly
(A, B) as defined above gives the bipartition of T;F. Observe that after
removing all the artificial edges from T;", the above partition (A4, B) also
defines a bipartition for the tree T;.

STEP 5 (GRACEFUL LABELING OF T})

Observe that corresponding to each artificial edge w;w;41, joining the
tail of T to the tail of T7},, for i even, there is a unique arc e in T}, joining
the head of T/}, to the head of T/, with i even, then such arc e of T} is
called the counter edge of the artificial edge w;w;+1. Denote the vertices
of A and B by ai,as,as,...,a, and by by, b, bs, ..., by respectively, where
p+q= N+1. Givelabel NNN—-1,N-2,N-3,...,N —(p—1) respectively
to the vertices a;,as,as,...,ap of A and 0,1,2,...,q — 1, respectively to
the vertices b, ba,...,b, of B. In the above labeling observe that in T},
edge value of an artificial edge and its counter edge in 77" have the same
edge value. Thus removal of all the artificial edges from Tjt results in T}
with distinct edge values ranging from 1 to N. Therefore the above labeling
gives the required graceful labeling of T;. It is easy to see that this graceful
labeling is also an a-labeling. O

3 The tree T; is graceful

In this section we prove that the i** attachment tree T} is graceful, for
i>2.

By induction we assume that the (i — 1)** attachment tree T}_;, ¢ > 2
has a-valuation. For i > 2, consider the graph T;", ((i — 1)** attachment
tree together with the artificial edges). Ignore the a-labeling of T;_;. Con-
sider the unique path P : v;vpu3...v of T;' | as defined the STEP 3 of
proof of Theorem 1 (Note that {v,v,...,u} is the set of all admissible
vertices of T;" ;. For each edge v;v;41 of P retain the directions v; to vj+1,
for 1 < j<1—1andjodd and while for 2 < j <1 —1 and j even,
reorient the edges v;jv;41 in the opposite direction as v;;.1v;. Denote this
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reoriented graph as T{" Now, remove all the artificial edges of T;+ T1- The

resulting graph thus obtained is a tree T;_, with different orientation on
certain edges.

Let T4 be any caterpillar. Consider ! copies of the T4 and denote
them by TJA, for 1 < j < l. Give tail to head orientation or head to tail
orientation to the copies T#, for 1 < j < I depending on whether j is odd
or even.

Attach the head of each copy of TJA at each admissible vertex v; of T;._1,
for 1 < j < I. The resulting tree thus obtained is 7}, the ¢** attachment
tree T;—; © T4.

Theorem 2. Fori > 2, the it* attachment tree T; admits a-labeling.

Proof. Let N be the number of edges of T;.

For ¢ > 2, consider T;.

For convenience of the graceful labeling we introduce artificial edges
between certain pairs of vertices of T;. More precisely, for 2 < j <I—1and
7 even join the tail of the Tf‘, say w;, to the tail of the T i1y 88y wjg, by
an arc from w; to w;41 (we refer such arcs as artificial edges) The graph
thus obtained is denoted by T:*. Observe that T;' has no odd cycle. Thus
T;t is a bipartite graph.

Designate the tail of the first copy T{* as the source of T:*. If l is even,
tail of T/* is designated as the sink of T"' and if { is odd, hea,d of TA is
desxgnated as the sink of T;'. Ignore all the labels of the admissible vert1ces
in T;.

Similarly as in STEP 2 of Theorem 1 here too we NAME the tail of
T{ of T;* as v; and its unique unlabeled adjacent admissible vertex (with
out—degree at least one) by vs. For j > 1 in T;F if an admissible vertex is
named v; then name its unique unlabeled a.djacent admissible vertex (with
out-degree at least one) by v;41 and continue to name all the admissible
vertices of T;" and finally name the sink of T;'.

As in STEP 3 of Theorem 1 here too we observe that there is a unique
path P starting with the source and ending with the sink of T;" containing
all the admissible vertices vy, vs,...,v1.

Define the bipartition (A, B) for T; as defined in STEP 4 of Theorem 3.
Denote the elements of A and B of (4, B) by a1, as,...,a, and by, ba, ..., bg
respectively, where p+q = N + 1. Give the labels NN —-1,N-2,...,N—
(p—1) to the vertices @;,az,...,ap0f Aand 0,1,2,...,g—1 to the vertices
b1,b,...,by of B. This labeling as seen in STEP 5 of Theorem 1, also
results in a graceful labeling of T;. It is easy to see that this graceful
labeling is also an a-labeling,. O

From Theorems 1 and 2 following corollary 1 is an immediate conse-
quence of Rosa’s theorem [21].
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Corollary 1. For each tree T;, for i > 1, there exists a decomposition of
the edges of the complete graph Koema1 into subgraphs isomorphic to T,
where c is an arbitrary natural number and m = |E(T3)).

Due to the recent result on El-Zanati and Vanden Eynden [5] we have
the following corollary.

Corollary 2. For each tree T;, for i > 1, there ezists a decomposition of
the edges of the complete bipartite graph K gm pm into subgraphs isomorphic
to T;, where p,q are arbitrary natural numbers with m = |E(T})|.

4 Discussion

Observe that for i > 1, T; is defined recursively from T;_;, with T as any
caterpillar. As Tp is graceful, our attachment process led T; to be graceful.
So it tempts to ask the question that if 7; is defined recursively from T;_;
with Ty as any a-valuation tree, whether is it true that 7; always admits
graceful labeling. We believe that the answer to this question is affirmative.
So we pose the following.

Conjecture 1. Fori > 1, T; = Ti— & T4 is graceful where Tp is any
«-labeled tree and T4 is any caterpillar.
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APPENDIX
ﬁ r——o— V > W < W
Y1 ) V3 Va Vs
The tree Ty

! V2 V3 V4 Vs Y6

The tree T4 with the head v; and the tail vg
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The graph 77 = T;'_'_l
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The Attachment tree T4 with the head v;
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