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Abstract

A graph G is called H —equipackable if every maximal H-packing
in G is also a maximum H—packing in G. All My—equipackable
graphs and Ps;—equipackable graphs have been characterized. In this
paper, Py—equipackable paths, Py—equipackable cycles, Ms—equipac
kable paths and M3z—equipackable cycles are characterized.
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1 Introduction

The problem that we study stems from research of H—decomposable graphs,
randomly packable graphs and equipackable graphs. A graph G has order
[V(G)| and size |[E(G)|. The path and cycle on k vertices are denoted
by Pr and Cy, respectively. A matching in the graph G is a set of in-
dependent edges in G. A matching with ¢(¢ > 1) edges is denoted by
M,(t > 1). Let H be a subgraph of G. By G — H, here we denote the
graph left after we delete from G the edges of H and any resulting isolated
vertices. A collection of edge disjoint copies of H, say Hy,H,,--- , Hy,
where each H;(i = 1,2, -- , k) is a subgraph of G, is called an H — packing
in G. A graph G is called H — packable if there exists an H—packing
of G. An H-packing in G with k copies Hy, Hs,--- ,H} of H is called
mazimal if G — Uf=1 E(H;) contains no subgraph isomorphic to H. An
H —packing in G with k copies Hq, Hs,:-- , Hi of H is called mazimum if
no more than k edge disjoint copies of H can be packed into G. A graph
G is called H — decomposable if there exists an H—packing of G which
uses all edges in G and G is called randomly H — decomposable if every
maximal H—packing in G uses all edges in G(See [4]). There have been
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many results on H—decomposable graphs and randomly H—decomposable
graphs(See [5] and (1], where randomly H—decomposable is called randomly
H-packable).

As a relaxation of random H—decomposability, B. L. Hartnell and P.
D. Vestergaard [2] gave the definition of H—equipackable: a graph G is
called H — equipackable if every maximal H—packing in G is also a maxi-
mum H—packing in G. And they characterized Ps—equipackable graphs of
girth five or more. Later, P. D. Vestergaard [5] gave the characterization of
P;—equipackable graphs with all valences at least two. Recently, B. Ran-
derath and P. D. Vestergaard characterized all P;—equipackable graphs. In
2006, Zhang and Fan ([6]) characterized all My—equipackable graphs. In
this paper, we investigate Py—equipackable paths, Py—equipackable cycles,
Mj—equipackable paths and M3—equipackable cycles.

We first give a lemma which is easy but very crucial to our work:

Lemma 1. Let G be an F—packable graph and H be an F—packable sub-
graph of G which satisfy: (1) H is not F—equipackable; (2) G — H is
F—decomposable. Then G is not F—equipackable.

Proof. Since H is F—packable but not F'—equipackable, by the definitions
of packable and equipackable, H has at least one maximal F—packing which
is not maximum. And G- H is F—decomposable, G — H has an F—packing
which uses all edges of G — H. The union of the two F—packing mentioned
above forms a maximal F—packing which is not maximum. So G is not
F—equipackable. O

2 Main results

2.1 P,—equipackable paths
Theorem 2. A path P, is Py—equipackable if and only if n = 4,5,6,9.

Proof. We can easily verify that Py, Ps, Ps, Py are all Py—equipackable.
Conversely, let P, be a Py—equipackable path, then we have five cases:
Case 1: When n < 3, since P, contains no copy of P, P, can’t be

P4—equipackable.

Case 2: When 4 < n < 6, it’s easy to know the number of P; in
the maximum Pj-packing of P, is 1. And P, is P4—packable, so each
maximal P,—packing is also a maximum P—packing. Then P, must be
P;—equipackable.

Case 3: When n = 7 or n = 8, the number of P in the maximal
Py-packing of P, is 1 or 2. By the definition, P, is not Py—equipackable.

Case 4: When n = 9, it's easy to verify the number of Py in the maximal
P,—packing of P, only can be 2. By the definition, P, is P4—equipackable.
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Case 5: When n > 10, there are three subcases:

Subcase 1: when n — 7 = 0(mod3), P, — P; has 3k(k € Z,k > 1) edges,
so P, — Py is Py—decomposable. From case 3, P; is not P;—equipackable.
By Lemma 1, P, is not Py;—equipackable.

Subcase 2: when n — 7 = 1(mod3), P, — P is Py—decomposable. Sim-
ilarly, P, is not Py—equipackable.

Subcase 3: when n — 7 = 2(mod3), we can easily verify that Ps is
not Py—equipackable: the number of P in the maximal P;—packing of
Piz is 2 or 3. Obviously, P, — P2 is P;—decomposable, so P, is not
Py—equipackable.

From above, P, is Py—equipackable if and only if n = 4,5,6,9. a

2.2 Pj;—equipackable cycles
Theorem 3. A cycle C,, is Py—equipackable if and only ifn = 4,5,6,7,8,11.

Proof. We can easily verify that Cy, Cs, Cg, Cr, Cg, C1; are all Py—equipack
able.

Conversely, let C,, be a Py—~equipackable cycle, then we have four cases:

Case 1: When n < 3, since C,, contains no P;, C,, can’t be Py—equipack
able.

Case 2: When n = 4 or n = 5, it’s easy to know the number of P,
in the maximum P;-packing of C,, is 1. And C, is Py—packable, so each
maximal Py—packing is also a maximum P;—packing. Then C, must be
P;—equipackable.

Case 3: When 6 < n < 8, it’s easy to verify the number of P4 in
the maximal Ps-packing of C, only can be 2. By the definition, C, is
Py—equipackable.

Case 4: When n > 9, there are three subcases:

Subcase 1: When n — 6 = 0(mod3), C, — P; is P;—decomposable
since C, — P; has 3k(k € Z,k > 1) edges. By Theorem 2, P; is not
Py—equipackable. By Lemma 1, C, is not Py—equipackable.

Subcase 2: When n — 6 = 1(mod3), C, — P; is Py—decomposable.
By Theorem 2, P; is not Py—equipackable. By Lemma 1, C, is not
Py—equipackable.

Subcase 3: When n — 6 = 2(mod3), there are two possibilities:

(1) When n = 11, we can easily verify that C;; is Pyj—equipackable: the
number of P, in the maximal P;—packing of Ci; only can be 3.

(2) When n # 11, C, — Py5 is Py—decomposable. By Lemma 1, C,, is
not Py—equipackable.

From above, C,, is Py—equipackable if and only if n = 4,5,6,7,8,11. O

389



2.3 Mj—equipackable paths

Theorem 4. A path P, is Ms—equipackable if and only if n = 3k(k €
Z,k>2).

Proof. We can easily verify that Psi(k € Z, k > 2) are all M3—equipackable.

Conversely, let P, be an M3—equipackable path, then we have three
cases:

Case 1: When n < 5, P, can’t be M3—equipackable since P, contains
no M3.

Case 2: When 6 < n < 11, it’s easy to verify when n = 6,9, each
maximal M3—packing of P, is also maximum, P, is M3—equipackable;
when n = 7,8, 10, 11, the number of M3 in the maximal M3-packing of P,
is not unique, so P, is not M3—equipackable.

Case 3: When n > 12, there are three subcases:

Subcase 1: When n = 0(mod3), P, is Ms—equipackable. We can easily
give a maximal M3—packing of P, with [231] copies of Ms, and P, has
only (n — 1) edges, so the number of M3 in the maximum Mj;—packing
of P, is also ["T'l] In the following, we prove by contradiction that the
number of every maximal Mz—packing of P, is [251].

Assume that there exists a maximal M3—packing H = {H,, Ha,--- , Hi}
which uses less than [23!] copies of Mj, then the number of edges re-
mained is more than 5. Five edges in a path must contain a copy of M3,
that is, P, — H still contains M3 which contradicts to the fact that H =
{H1,H,,--- ,Hy} is a maximal M3—packing. So P, is Ms—equipackable.

Subcase 2: When n = 1(mod3), P, — P; has 3k(k € Z,k > 2) edges, and
it has a maximal M3—packing which uses all its edges, so it is M3—decompos
able. Since P; is not M3—equipackable, by Lemma 1, P, is not M3;—equipack
able.

Subcase 3: When n = 2(mod3), similarly, P, — Ps is M3—decomposable.
By Lemma 1, P, is not Mz—equipackable.

So P, is M3—equipackable if and only if n = 3k(k € Z,k > 2). ]

2.4 M;j;—equipackable cycles

Theorem 5. A cycle C, is M3—eguipackable if and only if n = 6,7,3k +
2k e Z,k>2).

Proof. We can easily verify that Cg,C7,Carsa(k € Z,k > 2) are all M3—
equipackable.
Conversely, let C,, be an M3—equipackable cycle, we have three cases:
Case 1: When n < 5, C,, can’t be M3—equipackable since C,, contains
no Mjs.
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Case 2: When 6 < n < 11, it’s easy to verify when n = 6,7, 8,11, each
maximal Mz—packing of P, is also maximum, C, is Mz—equipackable;
when n = 9,10, the number of M3 in the maximal Ms-packing of C,, is 2
or 3, so Cy, is not M3—equipackable.

Case 3: When n > 12, there are three subcases:

Subcase 1: When n = 0(mod3), Cy, — P; has 3k(k € Z, k > 2) edges, and
it has a maximal M3—packing which uses all its edges, so it is M3 —decompos
able. Since P is not M3—equipackable, by Lemma, 1, C,, is not M3—equipack
able.

Subcase 2: When n = 1(mod3), similarly, C,, — Py is M3—decomposable.
Since Pg is not M3—equipackable, by Lemma 1, C,, is not Mz—equipackable.

Subcase 3: When n = 2(mod3), C, is M3—equipackable:

We can easily give a maximal Mj-packing of C,, with [§] copies of M,
and C, has n edges, so the number of M3 in the maximum Mj-packing of
C, is also [2]. In the following, we still prove by contradiction that the
number of every maximal Ms—packing of P, is [3].

Assume that there exists a maximal M3~packing H = {Hy, H,--- , Hy}
which uses less than [%] copies of M3, then the number of edges remained is
more than 5. Five edges in a cycle must contain a copy of M3, that is, C,,— H
still contains M3 which contradicts to the fact that H = {Hy, Ha,- - , Hi}
is a maximal M3—packing. So C,, is Ms—equipackable.

From above, C), is M3—equipackable if and only if n = 6,7,3k + 2(k €
Z,k >2). ]
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