H-equipackable paths and cycles for $H=P_4$ and $H=M_3$ *†

Yuqin Zhang

Yajing Sun

Department of Mathematics Tianjin University, 300072, Tianjin, China

Abstract

A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. All M_2 -equipackable graphs and P_3 -equipackable graphs have been characterized. In this paper, P_4 -equipackable paths, P_4 -equipackable cycles, M_3 -equipackable paths and M_3 -equipackable cycles are characterized.

Keywords: Packing, equipackable, path, matching.

1 Introduction

The problem that we study stems from research of H-decomposable graphs, randomly packable graphs and equipackable graphs. A graph G has order |V(G)| and size |E(G)|. The path and cycle on k vertices are denoted by P_k and C_k , respectively. A matching in the graph G is a set of independent edges in G. A matching with $t(t \geq 1)$ edges is denoted by $M_t(t \ge 1)$. Let H be a subgraph of G. By G - H, here we denote the graph left after we delete from G the edges of H and any resulting isolated vertices. A collection of edge disjoint copies of H, say H_1, H_2, \dots, H_k , where each $H_i(i=1,2,\cdots,k)$ is a subgraph of G, is called an H-packingin G. A graph G is called H-packable if there exists an H-packingof G. An H-packing in G with k copies H_1, H_2, \dots, H_k of H is called maximal if $G - \bigcup_{i=1}^k E(H_i)$ contains no subgraph isomorphic to H. An H-packing in G with k copies H_1, H_2, \dots, H_k of H is called maximum if no more than k edge disjoint copies of H can be packed into G. A graph G is called H-decomposable if there exists an H-packing of G which uses all edges in G and G is called randomly H-decomposable if every maximal H-packing in G uses all edges in G(See [4]). There have been

^{*}This research was supported by National Natural Science Foundation of China(10671014), National Natural Science Foundation of China(10701033).

[†]E-mail addresses: yqinzhang@163.com; yuqinzhang@126.com

many results on H-decomposable graphs and randomly H-decomposable graphs (See [5] and [1], where randomly H-decomposable is called randomly H-packable).

As a relaxation of random H-decomposability, B. L. Hartnell and P. D. Vestergaard [2] gave the definition of H-equipackable: a graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. And they characterized P_3 -equipackable graphs of girth five or more. Later, P. D. Vestergaard [5] gave the characterization of P_3 -equipackable graphs with all valences at least two. Recently, B. Randerath and P. D. Vestergaard characterized all P_3 -equipackable graphs. In 2006, Zhang and Fan ([6]) characterized all M_2 -equipackable graphs. In this paper, we investigate P_4 -equipackable paths, P_4 -equipackable cycles, M_3 -equipackable paths and M_3 -equipackable cycles.

We first give a lemma which is easy but very crucial to our work:

Lemma 1. Let G be an F-packable graph and H be an F-packable subgraph of G which satisfy: (1) H is not F-equipackable; (2) G-H is F-decomposable. Then G is not F-equipackable.

Proof. Since H is F-packable but not F-equipackable, by the definitions of packable and equipackable, H has at least one maximal F-packing which is not maximum. And G-H is F-decomposable, G-H has an F-packing which uses all edges of G-H. The union of the two F-packing mentioned above forms a maximal F-packing which is not maximum. So G is not F-equipackable.

2 Main results

2.1 P_4 -equipackable paths

Theorem 2. A path P_n is P_4 -equipackable if and only if n = 4, 5, 6, 9.

Proof. We can easily verify that P_4, P_5, P_6, P_9 are all P_4 -equipackable.

Conversely, let P_n be a P_4 -equipackable path, then we have five cases: Case 1: When $n \leq 3$, since P_n contains no copy of P_4 , P_n can't be P_4 -equipackable.

Case 2: When $4 \le n \le 6$, it's easy to know the number of P_4 in the maximum P_4 -packing of P_n is 1. And P_n is P_4 -packable, so each maximal P_4 -packing is also a maximum P_4 -packing. Then P_n must be P_4 -equipackable.

Case 3: When n = 7 or n = 8, the number of P_4 in the maximal P_4 -packing of P_n is 1 or 2. By the definition, P_n is not P_4 -equipackable.

Case 4: When n = 9, it's easy to verify the number of P_4 in the maximal P_4 -packing of P_n only can be 2. By the definition, P_n is P_4 -equipackable.

Case 5: When $n \ge 10$, there are three subcases:

Subcase 1: when $n-7\equiv 0 \pmod{3}$, P_n-P_7 has $3k(k\in Z,k\geq 1)$ edges, so P_n-P_7 is P_4 -decomposable. From case 3, P_7 is not P_4 -equipackable. By Lemma 1, P_n is not P_4 -equipackable.

Subcase 2: when $n-7 \equiv 1 \pmod{3}$, P_n-P_8 is P_4 -decomposable. Similarly, P_n is not P_4 -equipackable.

Subcase 3: when $n-7 \equiv 2 \pmod{3}$, we can easily verify that P_{12} is not P_4 -equipackable: the number of P_4 in the maximal P_4 -packing of P_{12} is 2 or 3. Obviously, $P_n - P_{12}$ is P_4 -decomposable, so P_n is not P_4 -equipackable.

From above, P_n is P_4 —equipackable if and only if n = 4, 5, 6, 9.

2.2 P_4 -equipackable cycles

Theorem 3. A cycle C_n is P_4 -equipackable if and only if n = 4, 5, 6, 7, 8, 11.

Proof. We can easily verify that $C_4, C_5, C_6, C_7, C_8, C_{11}$ are all P_4 —equipack able.

Conversely, let C_n be a P_4 -equipackable cycle, then we have four cases: Case 1: When $n \leq 3$, since C_n contains no P_4 , C_n can't be P_4 -equipack able.

Case 2: When n=4 or n=5, it's easy to know the number of P_4 in the maximum P_4 -packing of C_n is 1. And C_n is P_4 -packable, so each maximal P_4 -packing is also a maximum P_4 -packing. Then C_n must be P_4 -equipackable.

Case 3: When $6 \le n \le 8$, it's easy to verify the number of P_4 in the maximal P_4 -packing of C_n only can be 2. By the definition, C_n is P_4 -equipackable.

Case 4: When $n \geq 9$, there are three subcases:

Subcase 1: When $n-6\equiv 0 \pmod{3}$, C_n-P_7 is P_4 -decomposable since C_n-P_7 has $3k(k\in Z, k\geq 1)$ edges. By Theorem 2, P_7 is not P_4 -equipackable. By Lemma 1, C_n is not P_4 -equipackable.

Subcase 2: When $n-6\equiv 1 \pmod{3}$, C_n-P_8 is P_4 -decomposable. By Theorem 2, P_8 is not P_4 -equipackable. By Lemma 1, C_n is not P_4 -equipackable.

Subcase 3: When $n-6 \equiv 2 \pmod{3}$, there are two possibilities:

- (1) When n = 11, we can easily verify that C_{11} is P_4 -equipackable: the number of P_4 in the maximal P_4 -packing of C_{11} only can be 3.
- (2) When $n \neq 11$, $C_n P_{12}$ is P_4 -decomposable. By Lemma 1, C_n is not P_4 -equipackable.

From above, C_n is P_4 —equipackable if and only if n = 4, 5, 6, 7, 8, 11.

2.3 M_3 -equipackable paths

Theorem 4. A path P_n is M_3 -equipackable if and only if $n = 3k(k \in \mathbb{Z}, k \geq 2)$.

Proof. We can easily verify that $P_{3k}(k \in \mathbb{Z}, k \geq 2)$ are all M_3 —equipackable. Conversely, let P_n be an M_3 —equipackable path, then we have three cases:

Case 1: When $n \leq 5$, P_n can't be M_3 -equipackable since P_n contains no M_3 .

Case 2: When $6 \le n \le 11$, it's easy to verify when n = 6, 9, each maximal M_3 -packing of P_n is also maximum, P_n is M_3 -equipackable; when n = 7, 8, 10, 11, the number of M_3 in the maximal M_3 -packing of P_n is not unique, so P_n is not M_3 -equipackable.

Case 3: When $n \ge 12$, there are three subcases:

Subcase 1: When $n \equiv 0 \pmod{3}$, P_n is M_3 —equipackable. We can easily give a maximal M_3 —packing of P_n with $\left[\frac{n-1}{3}\right]$ copies of M_3 , and P_n has only (n-1) edges, so the number of M_3 in the maximum M_3 —packing of P_n is also $\left[\frac{n-1}{3}\right]$. In the following, we prove by contradiction that the number of every maximal M_3 —packing of P_n is $\left[\frac{n-1}{3}\right]$.

Assume that there exists a maximal M_3 -packing $H = \{H_1, H_2, \cdots, H_k\}$ which uses less than $\left[\frac{n-1}{3}\right]$ copies of M_3 , then the number of edges remained is more than 5. Five edges in a path must contain a copy of M_3 , that is, $P_n - H$ still contains M_3 which contradicts to the fact that $H = \{H_1, H_2, \cdots, H_k\}$ is a maximal M_3 -packing. So P_n is M_3 -equipackable.

Subcase 2: When $n \equiv 1 \pmod{3}$, $P_n - P_7$ has $3k (k \in \mathbb{Z}, k \geq 2)$ edges, and it has a maximal M_3 —packing which uses all its edges, so it is M_3 —decompos able. Since P_7 is not M_3 —equipackable, by Lemma 1, P_n is not M_3 —equipackable.

Subcase 3: When $n \equiv 2 \pmod{3}$, similarly, $P_n - P_8$ is M_3 -decomposable. By Lemma 1, P_n is not M_3 -equipackable.

So P_n is M_3 -equipackable if and only if $n = 3k (k \in \mathbb{Z}, k \ge 2)$.

2.4 M_3 -equipackable cycles

Theorem 5. A cycle C_n is M_3 -equipackable if and only if $n = 6, 7, 3k + 2(k \in \mathbb{Z}, k \geq 2)$.

Proof. We can easily verify that $C_6, C_7, C_{3k+2} (k \in \mathbb{Z}, k \geq 2)$ are all M_3 -equipackable.

Conversely, let C_n be an M_3 -equipackable cycle, we have three cases:

Case 1: When $n \leq 5$, C_n can't be M_3 —equipackable since C_n contains no M_3 .

Case 2: When $6 \le n \le 11$, it's easy to verify when n = 6, 7, 8, 11, each maximal M_3 -packing of P_n is also maximum, C_n is M_3 -equipackable; when n = 9, 10, the number of M_3 in the maximal M_3 -packing of C_n is 2 or 3, so C_n is not M_3 -equipackable.

Case 3: When $n \ge 12$, there are three subcases:

Subcase 1: When $n \equiv 0 \pmod{3}$, $C_n - P_7$ has $3k (k \in \mathbb{Z}, k \geq 2)$ edges, and it has a maximal M_3 —packing which uses all its edges, so it is M_3 —decompos able. Since P_7 is not M_3 —equipackable, by Lemma 1, C_n is not M_3 —equipackable.

Subcase 2: When $n \equiv 1 \pmod{3}$, similarly, $C_n - P_8$ is M_3 -decomposable. Since P_8 is not M_3 -equipackable, by Lemma 1, C_n is not M_3 -equipackable. Subcase 3: When $n \equiv 2 \pmod{3}$, C_n is M_3 -equipackable:

We can easily give a maximal M_3 -packing of C_n with $\left[\frac{n}{3}\right]$ copies of M_3 , and C_n has n edges, so the number of M_3 in the maximum M_3 -packing of C_n is also $\left[\frac{n}{3}\right]$. In the following, we still prove by contradiction that the number of every maximal M_3 -packing of P_n is $\left[\frac{n}{3}\right]$.

Assume that there exists a maximal M_3 -packing $H = \{H_1, H_2, \cdots, H_k\}$ which uses less than $\left[\frac{n}{3}\right]$ copies of M_3 , then the number of edges remained is more than 5. Five edges in a cycle must contain a copy of M_3 , that is, $C_n - H$ still contains M_3 which contradicts to the fact that $H = \{H_1, H_2, \cdots, H_k\}$ is a maximal M_3 -packing. So C_n is M_3 -equipackable.

From above, C_n is M_3 -equipackable if and only if $n = 6, 7, 3k + 2(k \in \mathbb{Z}, k \geq 2)$.

References

- [1] L. W. Beineke, P. Hamberger and W. D. Goddard, Random packings of graphs, *Discrete Mathematics*, 125(1994), 45-54.
- [2] B. L. Hartnell and P. D. Vestergaard, Equipackable graphs, Bull. Inst. Combin. Appl. 46 (2006), 35-48.
- [3] B. Randerath and P. D. Vestergaard, All P_3 -equipackable graphs, Discrete Mathematics, to appear.
- [4] S. Ruiz, Randomly decomposable graphs, Discrete Mathematics, 57(1985), 123-128.
- [5] P. D. Vestergaard, A short update on equipackable graphs, Discrete Mathematics, 308(2008), 161-165.
- [6] Y.Q. Zhang and Y.H. Fan, M₂-equipackable graphs, Discrete Applied Mathematics, 154(2006), 1766-1770.