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AspstracT. Let V denote the n-dimensional row vector space over a finite field
F;, and fiz a subspace W of dimension n —d. Let L(n,d) = P U {0}, where
P = {A|A is a subspace of V, A+W = V'}. Partially ordered by ordinary or re-
verse inclusion, two families of finite atomic laitices are obtained. This article
discusses their geometricity, and computes their characteristic polynomials.

Key words: Finite field; Vector space; Lattices; Characteristic polynomials.
AMS classification: 20G40; 51D25

1. INTRODUCTION

Let F, be a finite field with g elements, where ¢ is a prime power. For
a positive integer n, let V be the n-dimensional row vector space over
F,. For a fixed (n ~ d)-subspace W of V, let L(n,d) = P U {0}, where
P = {A|A is a subspace of V,A+W = V'}. Partially ordered by ordinary or
reverse inclusion, L(n, d) is a finite poset, denoted by Lo(n,d) or Lgr(n,d),
respectively. For any two elements A, B € Lo(n,d),
AnNB fW+(AnB)=Y,
{0} otherwise.
AVvB=A+B.
Similarly, for any two elements A, B € Lr(n,d),
AVE = ANB 1fW+.(Ar‘IB) =V,
{0} otherwise.
AANB=A+B
Therefore, both Lo(n,d) and Lr(n,d) are finite lattices. This article dis-
cusses their geometricity, and computes their characteristic polynomials.
The results on the lattices generated by distance-regular graphs can

be found in Guo, Gao and Wang(2007), the lattices generated by orbits of
subspaces under finite nonsingular classical groups can be found in Wang
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and Feng(2006), Wang and Guo(2007), Wang and Li(in press), Huo et
al.(1992a,b,1993),Huo and Wan (2001,2002a), and under finite singular
symplectic group and singular unitary group can be found in Gao and
You(2003a ,b).

2. PRELIMIANRIES

In the following we recall some definitions and facts on ordered sets and

lattices(see Aigher,1979)
Let P denote a finite set. A partial order on P is a binary relation <

on P such that
(1) a<aforanya€P.
(2) a<bandb < aimpliesa=5b.
(8) a<bandb<cimpliesa<c.
By a partial ordered set (or poset for short), we mean a pair (P, <), where
P is a finite set and < is a partial order on P. As usual, we write a < b
whenever a < b and a # b. By abusing notation, we will suppress reference
to <, and just write P instead of (P, <).

Let P be a poset and let R be a commutative ring with the identical
element. A binary function p(a,b) on P with values in R is said to be the
Moébius function of P if

z (a c) — 1 if a= b,
o 0 otherwise.

a<c<b

For any two elements a,b € P, we say a covers b, denoted by b < -a, if
b < a and there exists no ¢ € P such that b < ¢ < a. An element m of P
is said to be minimal (resp. mazimal) whenever there is no element a € P
such that a < m (resp. @ > m). If P has a unique minimal (resp. maximal)
element, then we denote it by 0 (resp. 1) and say that P is a poset with
0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we
mean a function r from P to the set of all the non-negative integers such
that
(1) r(0) = 0.
(2) r(a) =7(d) + 1 whenever b < -a.
Let P be a finite poset with 0 and 1. The polynomial

x(P,x) =Y p(0,a)z" M=),
a€P

is called the characteristic polynomial of P, where r is the rank function of

P.
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A poset P is said to be a lattice if both a V b := sup{a,b} and a A
b :=inf{a, b} exist for any two elements a,b € P. Let P be a finite lattice
with 0. By an atom in P, we mean an element in P covering 0. We say
P is atomic lattice if any element in P\ {0} is a union of atoms. A finite
atomic lattice P is said to be a geometric lattice if P admits a rank function
r satisfying
r(a Ab) +r(aVd) < r(a)+r(b),Va,be P.

For any two positive integers n > m, let

[n] _ ) 1).

m [Tz (¢ - 1)

For convenience, we assume that [7:] = 0 whenever n < ¢ and [g] =1.
q

q
By Wan(2002b,Th. 1.7) we know that [:;] is the number of m-dimensionl

subspaces in the n-dimensional row space over a finite field F;.

Let V denote the n-dimensional row space over a finite field F;. Denote
by GLn(Fy) the set of all the n x n nonsingular matrices over F;. Then
GLn(F,) forms a group under matrix multiplication, and acts on V as
followings

V x GLn(Fg) —V
((xlax2a e $xn)7T) — ($1,$21 e ;xn)T-
If U is an m-subspace of V with a basis u3,ug, -+ , 4, the m X n matrix
U1
U2
Um

is said to be a matrix representation of U. We usually denote a matrix
representation of the m-subspace U still by U. The above action induces
an action on the set of all the subspaces. The above action is transitive
on the set of all the subspaces with the same dimension by Wan{2002b,Th.
1.3).

Lemma 2.1. Let V denote the n-dimensional row vector space over a fi-
nite field Fy, and fiz an (n — d)-subspace W of V. Then the number of

i-subspaces U of V satisfyingU +W =V is [1;::11] gdn=1),
q
Proof. By the transitivity of GLn(Fy) on the set of all the subspaces with

the same dimension, we may assume that W has the matrix representation
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of the form

W = (I 0(n—dd))
Let U has a matrix representation of the form

X(i—d,n—d) O(i—d,d)
( y@n—d) (@ )

where X is an (i — d) x (n — d) matrix of rank (1 —d), Y isad x (n — d)
matrix. Then X is a (i — d)-subspace which contained in /(*~%. By Wan

(2002b, Theorem 1.7), there are [’:: 3] choices for X. By the transitivity

q
of GL,(F,) we may take X = (It*~4) 0(i-4m=d)) Then U has the unique
matrix representation of the form

Jl=d) Qli=dn-i) ((i~d.d)
(%" "% o)

Hence the number of i-subspace U of V satisfying U+W =V is [’::g] gdn—9),
q
Lemma 2.2. Let V denote the n-dimensional row vector space over a fi-
nite field Fy, and fiz an (n — d)-subspace W of V . For a given la-subspace
Us of V satisfying Us + W =V, let u(n,d;l1,lz) denote the number of
l,-subspaces Uy of V satisfying Uy + W =V and Uy C Uz . Then
) _[2—d| a@a-u)
u(nidvlhlZ)_ [ll_d]qq v

Proof. Since the subgroup GLn(Fg)w of GLn(F,) fixing W acts tran-
sitively on the set{U|U + W = V,dimU = [}, the number u(n,d;l;,ls)
depend only on /; and l5. by Lemma 2.1 we obtain

lo—d
U(n, d; l11l2) = [lf _ d] qd(lz—h)_
q
Hence the desired result follows. 0

3. THE LATTICE Lo(n,d)

The lattice Lo(n,d) has the unique minimal element {0}-subspace, and
the unique maximal element V.
Theorem 3.1 Let 1 < d <n—1. Then (1) Lo(n,d) is an atomic lattice;
(2) Lo(n,d) is a geometric lattice if and only ifd =1 orn— 1.

Proof. (1) By the transitivity of GL,(F,) we may take W = (I(r~4)g(n—d.d)),
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For any {0} # B € Lo(n,d), dimB = i, By the transitivity of GLn(Fy) on
the set of all the subspaces with the same dimension, we may assume that
B has the matrix representation of the form

o(di-d)  qldin-i) @
B=( [i-4)  gli—din—i) O(i—d,d))

Let A and C;,Cs, ... , C;_4 be the subspaces of V with the following matrix

representations
A = ( O(dvi_d) O(dv"_i) I(d) )

Cr = ( L&D gén-9 @ )
where 1< k<i—dand L = (ng))dx(i_d) satisfying
(k) _ 1 ifs=1t=k
¢ 710 otherwise.

Then A and C), Cs, ... ,C;_q4 are atoms of Lo(n, d) satisfying AVC1 VCaV
-++V Cq = B. Therefore, Lo(n,d) is an atomic lattice.
(2) For any A € Lo(n,d), define

_Jo if A= {0},
r(4) = {dimA —d+1 otherwise.

Then r is the rank function of Lo(n, d).
Ifd =1 or n —1, it is clear that Lo(n,d) is a geometric lattice. Now
suppose that 2 < d < n -2, let

2 n=—d—
A= ( I@n-d) [@ ), B=(I” 0@n=d-2) @) ¢ )

0 0 0 I(¢-2
then dim(AV B) =d + 2 and (A V B) = 3. It follows that

"(AAB)+r(AVB)=r(AVB)=3>r(A)+r(B)=2.
Hence Lo(n,d) is not a geometric lattice whenever 2 <d < n—2. O

Lemma 3.2. The Mébius function of Lo(n,d) is

( dimB-dimA )
(—1)dimB—dimA g 2 if {0}# A< Bor A=B={0},
n(A, B) = ¢
S dimB-d_1)i+1g\ 2 /y(n,d;dimB —i,dimB) if {0} =A< B
0 otherwise.
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Proof. The Mobius function of Lo(n, d) is

( dimB -dimA )
p,(A B) _ (_l)dimB—dimAq 2 if {0} :,é A< BorA=B= {0}
, — L a<c<p#(C, B) if {0} = A< B,
0 otherwise.

By Lemma 2.2, we have

- Z 4(C, B) = — z (—1)dimB—dimcq( dimp—alms )

A<C<B A<C<B

dimB-d ' ( i )
=— 3 (-1ig\ * / u(n,d;dimB - i,dimB)

=0

dimB-d ( i )
= Y (-1)"*'g\ * Ju(n,d;dimB —i,dimB).

i=0

Hence the desired result follows. O

Theorem 3.3. The character polynomial of Lo(n,d) is

et () a
x(Lo(n,d),z) = z" 14" D (~1)*g\ * Ju(n,d;j—i, ) r:_:] qHn=gn=i,
q

j=d i=0
Proof.
x(Lo(n,d),z)= Y, w({0},B)e"")~"®
{o}<B<V
= p({0}, {OP=" MO 4 37 p({0}, B)a")=T®
{0}<BLV
= gn—d+l 4 z u({o}’B)xn—dimB
{0)<BLV
n j—d ) ( ¢ ) o d ‘ '
=g+l 4 ZZ(—I)'“q * Ju(n,d;j —1,9) [j B d] g gn=i,
Jj=d i=0 q

4. THE LATTICE L(n, d)
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The lattice Lg(n,d) has the unique minimal element V', and the unique
maximal element {0}-subspace.
Theorem 4.1. Let 1 <d <n—1. Then (1) Lr(n,d) is an atomic lattice;
(2) Lgr(n,d) is a geometric lattice if and only if n —d = 1.
Proof. (1) By the transitivity of GL (F,) we may take W = (I(*~#)0(r=d.d)),
For any V # B € Lg(n,d), dimB = %, By the transitivity of GLn(Fg) on
the set of all the subspaces with the same dimension, we may assume that
B has the matrix representation of the form

O(d,i—d) O(d'n_i) I(d)
=( JG-4)  gli-din—i) O(i-d,d))

Let A and C1,Cs,... ,Cn_1-; be the subspaces of V with the following
matrix representations

Odi-d)  gldn—1-D (D) 1@
A= ( I(i—-d) O(i—d,n—l-—i) O(i—d,l) O(i—d,d) )

o(n—1-i,i—d) I(n—l-i) on—1-i,1) o{n—1-i,d)

J(i—d) o(i—d,n—l—i) oli—d,1) oli—d.d)

o(n-1-ii—d) L’(cn—l-i) M,E"'l_i’l) oln—1-i,d)

O(dri—d) O(d,ﬂ—l-"i) O(d»l) I(d)

where 1<k<n-1-—iand Ly = (:cgf))(n_l_,-) x(n—1-1) Satisfying

20 1 ifs=t#k,
st 0 otherwise.

M = (yg’f))(n-l—i)xl satisfying

(k) _ 1 if3=k,
Yst' =10 otherwise.

Then A and C1,Cs,... ,Cn-1—; are atoms of Lg(n, d) satisfying AV C, V
CyV -V Cp_1—; = B. Therefore, Lr(n,d) is an atomic lattice.
(2)For any A € Lg(n,d), define

n—-d+1 if A= {0}
I A = H
r'(4) {n —dimA otherwise.

Then ¢ is the rank function of Lg(n,d).
Clearly, Lr(n,n—1) is a geometric lattice. Now suppose that 1 < d < n—2.

Let
I(n—d—l) O(n—d—l,l) O(n—d-—l,d)
A= ( oldn—d-1)  qd1) 1@ )
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o{lin—d-1) 1(1,1) 1(1.1) 0f1.d-1)
(d-1,n-d-1)  ((d-1,1) o(d-1.1) J(d-1

I(n-d—l) O(n-d—l,l) O(n—d—l,l) O(n-—d—l,d-—l)
B=
0

then A, B € Lr(n,d),dimA =dimB=n-1, AVB={0},AAB=V. It
follows that

T"(AAB)+7r"(AVB)=n—-d+12>3>7'(A)+(B)=2.

Hence Lg(n,d) is not a geometric lattice whenever 1 < d < n—2. O

Lemma 4.2. The Mobius function of Lr(n,d) is

( dimA-dimB )
(—1)dimA-dimB, 2 if A<B#{0}orA=B={0},
H(A,B) = i )

YhimA=d(_1)i+1g\ * /u(n,d;dimA —i,dimA) if A < B = {0},
0 otherwise.

Proof. The Mobius function of Lr(n,d) is

( dimA-dimB )
AB (_1)dimA-dimBq 2 if A< B;ﬁ {0}01'A= B= {0},
MAB) =1 Y a<c<n M4, C) if A< B = {0},

0 otherwise.

By Lemma 2.2, we have

- Y w4 == 3 (-1yfm A_dimcq( anmA;di,,.c)

A<C<B A<C<B

dimA-d ( ‘ )
=-— Y (-1%q\ * /u(n,d;dimA - 4,dimA)

i=0

dimA—d . ( ¢ )
= Z (-1)i+1g\ * /u(n,d;dimA — i, dimA).

=0

Hence the desired result follows. 0

Theorem 4.3. The character polynomial of Lr(n,d) is
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n—d ( t )
i —-d i e
X(Lr(n,d),z) = t'2_0:(--1) A [nri i— d],, g¥znmat 4

n n—4
Z(_l)n—jq( 2 ) [n—g] gdn=i) gi=d+1,
q

j=d J=
Proof.
x(Lr(n,d),z) = Z u(V, B)mr({o})—r(B)
v<B<{0}
= u(V, {0})xr({0})—r(V) + Z w(V, B)xdimB—d+1
V<B<{0}
dimV —-d ( ‘ )
= 3 (-)*g\ * Ju(n,din -, n)em4H 4
=0
i(—l)"‘jq( z ) [T,‘_d] g gi=d+1
j=d j=d,
ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of
China under Grant No. 60776810 and the Natural Science Foundation of
Tianjin City in China under Grant No. 08JCYBJC13900.

REFERENCES

Aigner, M. (1979). Combinatorial Theory. Berlin:Springer-Verlag.

Guo, J., Gao, S. and Wang, K. (2007). Lattices generated by subspaces in
d-bounded distance- regular graphs, Discrete Math. doi:10.1016/j.disc.
2007.09.046.

Gao, Y. (2003a). Lattices Generated by Orbits of Subspaces under Finite

Singular Unitary Groups and Its Characteristic Polynomials, Linear
Algebra Appl.368: 243-268.

Gao, Y., You, H. (2003b). Lattices Generated by Orbits of Subspaces un-

der Finite Singular Classical Groups and Its Characteristic Polynomi-

401



als, Comm.Algebra 31: 2927-2950.

Huo, Y., Liu, Y., Wan, Z. (1992a). Lattices generated by transitive sets of
subspaces under finite classical groups I. Comm. Algebra 20:1123-
1144.

Huo, Y., Liu, Y., Wan, Z. (1992b). Lattices generated by transitive sets
of subspaces under finite classical groups II, the orthogonal case of
odd characteristic. Comm. Algebra 20:2685-2727.

Huo, Y., Liu, Y., Wan, Z. (1993). Lattices generated by transitive sets
of subspaces under finite classical groups III, orthogonal case of even
characteristic. Comm. Algebra 21:2351-2393.

Huo, Y., Wan, Z. (2001). On the geometricity of lattices generated by or-
bits of subspaces9 under finite classical groups. J. Algebra 243:339-
359,

Wan, Z., Huo, Y. (2002a). Lattices generated by orbits of subspaces under
finite classical groups(in Chinese), 2nd edition, Science Press, Bei-
jing.

Wan, Z. (2002b). Geometry of classical groups over finite fields, 2nd edi-
tion, Science Press, Beijing/New York.

Wang, K., Feng, Y. (2006). Lattices generated by orbits of flats under affine
groups, Comm. Algebra 34 1691-1697.

Wang, K., Guo, J. (2007).Lattices generated by orbits of totally isotropic
flats under finite affine-classical groups, Finite Fields and Their Ap-
plications doi:10.1016/j.ffa.2007.06. 004.

Wang, K., Li,Z. (2008). Lattices associated with vector spaces over a finite

field, Linear Algebra Appl. 429:439-446.



