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Abstract

We introduce notions of k-chromatic uniqueness and k-chromatic
equivalence in the class of all Sperner hypergraphs. They general-
ize the chromatic uniqueness and equivalence defined in the class of
all graphs [10] and hypergraphs [2, 4, 8]. Using some known facts,
concerning a k-chromatic polynomial of a hypergraph [5], a set of
hypergraphs whose elements are 3-chromatically unique is indicated.
A set of hypergraphs characterized by a described 3-chromatic poly-
nomial is also shown. The application of the investigated notions
can be found in {5).

Keywords: colorings of hypergraphs, chromatic polynomials of hyper-
graphs, chromatic uniqueness and equivalence
2000 Mathematics Subject Classification: 05C15, 05C65

1 Notation

For terminology not explicitly given in the article we follow [1]. A hy-
pergraph H consists of a finite non-empty set X(H) of wertices, and a
family £(H) of non-empty subsets of X (H), called edges. We often write
H = (X, &), which means that X = X(H) and £ = E(H).

An edge of cardinality h is called h-edge. If all edges of a hypergraph H
are h-edges, then H is said to be h-uniform. A hypergraph whose no edge
is a subset of another one is said to be Sperner.
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In this article all hypergraphs are Sperner and considered up to isomor-
phism. It means that H; = Ho (H; # Hz) denotes that H; is isomorphic
to Ha (H; is non-isomorphic to Hs).

For an n-vertex hypergraph H, where H = (X, &), and positive integers
7,81,...,ar €N, by a symbol H[a,,...,a,], we denote a hypergraph with
the vertex set X and the edge set {e € £ : |e| € {a1,...,a,}}. Next, for
&1 C £ a symbol H — £; stands for a hypergraph (X,€ — &;).

Let A € N. A—coloring of a hypergraph H is a mapping from the set X (H)
into the set {1,...,A}.

For a fixed A, k € N and a hypergraph H we denote by fi(H,A) the number
of different A-colorings of H satisfying that the image of each edge e € £(H)
is a multiset containing at least k different elements.

Let H be a hypergraph and let Parf(H) denote the number of partitions
of X(H) into exactly p non-empty parts, such that there exists an edge
e € £(H) that is contained in the union of at most k — 1 partition parts. It
is a known fact that fx(H, ) is a polynomial in A of the following form (5]

n

fe(H, ) = 2" =YX " s(p, j)Parf(H), (1)

j=0  p=j

where n = | X(H)| and s(p, 7) is the Stirling number of the first kind with
parameters p, j. It may be observed that fi.(H, A) # 0 is equivalent to the
condition that |e] > k for every e € E(H).

The partitions counted by Parf(H) for each permissible &, p, H are called
bad. Other partitions of X(H) will be called good.

2 Preliminaries

Below we recall the theorem, which will be useful in the next part of the
article. It is a special case of the general result, that was shown in [5].

Theorem 1 [5] Let H be a hypergraph with n vertices satisfying that each
edge of H has the cardinality at least three and let | € N. The sets of bad
partitions counted by the numbers Par§(H) and Par§(H[3,4,...,l +2]) are
equal forpe {n—1,...,n}.

Let a;,...,a, € N. A partition of an n-element set has a type (a1, ..., ay)
or is called an (ay,...,an)-type partition if it contains a; parts of size 7 for
ie{l1,...,n}. By (if ) we denote the set of all n-element subsets of the set
X.

Let €; denote a family of 4-element subsets of a set {x1,y1,Z2,¥2,...,Zq, ¥g}
which has the form {{z;,v:,z;,¥;}: 4,7 € {1,...,q9},¢ # j}. By H: we
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mean an n-vertex hypergraph with the set (V(Z‘:)) taken as a set of edges.
A symbol H9, n > 2q, stands for an n-vertex, 4-uniform hypergraph whose
vertices can be labeled in such a way that H&? = H2 — £,. For instance
the set of vertices of H$’3 can be labeled z1,¥1, 2, y2, T3, ¥3, T4 and in such

4,3
case E(H7®) = (VN \ {{z1, 22,11, 2}, {21, 73,11, U3}, {2, 73, 92, w3} }.
Lemma 2 Let H be a 4-uniform n-vertex hypergraph with m edges. Now,

Pary 2(H) = 3m + (3) — t, where t is the number of 3-element sets in
V(H) which are not included in any edge.

Proof. Partitions of an n-element set into n — 2 parts can be only of
two types: (n—3,0,1,0,...,0), (n —4,2,0,...,0). It is clear that among

n n
(3) partitions of the first kind, (3) — ¢t are bad. Moreover, for each 4-
element edge we can find three partitions of the second type which are bad
with respect to this edge. Obviously different edges correspond to different
partitions in that case, which completes the proof. |

Corollary 3 Let H be a 4-uniform n-vertex hypergraph with m edges, sat-
isfying that m > (}) —n+4. Each partztzon containing a part of the cardi-
nality at least three is counted by Pari(H) for corresponding l. Moreover,
Pary~2(H) =3m + (3).

Proof. The assumption m > (2‘) —n+4 implies that each 3-element subset
of V(H) is included in at least one edge. The last sentence of the corollary
follows Lemma 2. Consider a partition with an s-element part A. Next
analyze a fixed 3-element subset B of A. It was stated that B is included
in at least one edge of H, and 4-uniformity of H gives the assertion. |
Recall that the Stirling number of a second kind S(n, k) with parameters
n, k stands for the number of partitions of an n-element set into exactly &
non-empty parts.

Lemma 4 Ifn,quN g>3and (3) <n-—4, then

() 9+ P e
1 + =n-
Parf(Hy?) = S(rp) _2(n_p) pe{n—gn—q+ 1,.?.,71 -3}

S(n,p) pe€{l,2,...,n—qg—1}.

Proof. Because H29(2,3] is an edgeless hypergraph, the application of
Theorem 1 gives Par}(H%9) = Parj~'(H49) = 0. By Corollary 3 we
know the number Parj~2(H49). Let p € {1,...,n — 3}, Corollary 3 used
again implies that each partition into p parts, that has at least one s-
element part, s > 3, is bad. Hence, it is enough to consider only (2p —
n,n—p,0,...,0)-type partitions. Such a partition is good if and only if any

411



two of 2-element parts are not included in an edge. It means that in each
good partition, 2-element parts create the set {{z;,%:}, i € {1,...,n—p}}
with labeling suggested by the definition of H%49. The construction of
H49 implies that the number of such partitions is equal to (nﬂp), and
consequently Par§(Hy9) = S(n,p) — (.2 p). The equality (nzp =0, for p
satisfying 1 < p < n ~ g — 1, completes the proof. [ ]

3 Uniqueness and equivalence

Hypergraphs H;, Hz are called k-chromatically equivalent if fi,(Hi,\) =
fi(H2, A). A hypergraph H is said to be k-chromatically unique if H = H;
for each hypergraph H; such that fi(H1,A) = fi(H, A).

The notion of 2-chromatically unique graphs was introduced by Chao and
Whitehead [3). Next it was generalized to the notion of 2-chromatically
unique hypergraphs studied by Borowiecki and Lazuka [2], Dhomen [4] and
Tomescu (7, 8). The number of results in this field is still not impressive.
Below we recall all of the ones we know.

Let C?, denote a linear, h-uniform cycle with m edges. Tomescu proved
that a cycle CP, is 2-chromatically unique for all m, h being numbers not
less than three. The symbol SH(n,p,h) stands for an h-uniform hyper-
graph of order n and size k, wheren =h+(k—1)pand 1 <p < h -1,
h > 3. Each edge of C? consists of p distinct vertices and a common subset
to all edges with h —p vertices. In (8] it was shown that this hypergraph is
2-chromatically unique in the set of all A-uniform hypergraphs for every p,
that satisfies 1 < p < h—2, but this is not true for p, h satisfyingp=h—1
and k > 3. Also SH(n,p, h) is not 2-chromatically unique for all p, k, where
p, k> 2.

Borowiecki and Lazuka proved that SH(n, 1, h) is 2-chromatically unique.
Their result deals with the class of all hypergraphs (not only h-uniform).
The proof of the result was corrected in [9]. It is worth mentioning that
SH(n,1,4) is 3-chromatically unique for » € {3,...,6} [6], which was
pointed out using a computer. Moreover, SH(n, 1, h) is not h-chromatically
unique for any n greater than two, which can be verified immediately
by Theorem 1. Drgas-Burchardt and Kmiecik stated a hypothesis that
SH(n,1,4) is 3-chromatically unique for all n, where n > 3. They have
conjectured that there exists the dependence between k-chromatic unique-
ness and l-chromatic uniqueness of a given hypergraph for different param-
eters ! and k.

Below, we present a new contribution to the forward development of this
area. The next lemma follows immediately by equality (1).

Lemma 5 Let H; be a hypergraph satisfying fi(Hi,\) # 0. Hypergraphs
M1, Ha are k-chromatically equivalent if and only if |V (H1)| = |V (M)l
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and Parf(H,) = Parf(Hz) for p € {1,...,n}, where n is the common
cardinality of the vertex sets V(H,) and V(Hz).

Proof. Obviously, from formula (1), it follows that if for n = |V (H;)| =
[V(Hz)|and p € {1,...,n} we have Parp(H) = Parh(Hz) then fi(Hi,A) =
Jr(Ha, A).

Assume that fi(H1,A) = fe(H2,A) = A" + a1 A"+ ... +a, 1A Ev-
idently, using the formula (1) once more, n = |V (H;)| = |V(Hz2)| and
Par(Hy) = Paw',c (H2) = 0. For fixed 7, 1 < j < n— 1, we can observe the
equality Par](H,) = Par](Hz) as a consequence of the equalities:

an-g =~ S 5(p, ) Park(Ma) = — S o(p, ) Par(M2) and Par(Hy) =
Part(H,) forl € {j+1,...,n}. The last n—j equalities are based on anal-

ysis of the coefficients a;,...,a,_(j+1). It means that after n — 1 steps, for
j =mn-—1,...,1 respectively, the above considerations yield the assertion
in this case. a

Theorem 6 Let n,qg € N and (§) < n — 4. The hypergraph HY? is 3-
chromatically unique.

Proof. Conversely, suppose that there exists a hypergraph H*, different
from H249, that is 3-chromatically equivalent to H29. Of course [V (H*)| =
n because f3(H*,A) # 0 is a polynomial of degree n. By Theorem 1
we have that 0 = Py~ '(H*) = PR(H*) = PP(H*[2,3]), so for every
e € £(H*) must hold |e| > 4. Moreover, Theorem 1 and Lemmas 2,4 glve
us Par§~(H*) = 3((3) = (9)) + (3) = Par§2(H*[4]) = 3m + () —
where m is the number of 4-edges in H* and ¢ stands for the number of
3-element vertex subsets in V(H*), that are not included in any 4-edge of
H*. Next, it is possible to write the following sequence of equalities

3(3) - (@) + (3) = 3mo+ () — ¢
() - () = 3m—t.

Notice, that if ¢ > 0 then m < (}) —n + 3 and it follows

3((1) - (@D <3((5) —n+3) -t
and (I >n—-3+1%

which is impossible with respect to the assumption (§) < n — 4. Hence
t =0, m = (}) — (% and, in consequence, each partition of X(H*) into
n — ¢ non-empty parts, that contains a partition part being at least a 3-
element set is bad. The only good partition into n — ¢ parts can be of the
type (n — 2q,q, ,---,0). Such a partition is good if and only if (%) missed

4-edges form a a structure &, We thus get H*[4] = HA9. It is enough to
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decide if H* possesses any edges of size greater than four. According to the
construction of H*[4] we can easily check that each s-element vertex subset
of X(H*), where s > 5, contains a 4-edge of H*. It guarantees H* = H*[4]

and completes the proof because H* is a Sperner hypergraph. ]
Let Q denote a class of hypergraphs H satisfying the condition: if
Tiyy.. ., Tig € X(H), then at least one of sets: {zi,, iy, Tiyy Tiy }s

{Zigy Tigs Tigy Tig } {Tiy) Tig, Tig, Tig} is an edge of H.

Lemma 7 If H € @Q is a 4-uniform, n-vertez hypergraph with at least
(3) — n+ 4 edges, then Par§(H) = S(n,p) forpe{1,...,n—3}.

Proof. By Corollary 3 the only type of a good partition could be
(n-2q,q,0,...,0), where ¢ > 3. Let us consider arbitrary six vertices

n
creating three of 2-element parts {z;,3;}, 1 < ¢ < 3. According to the
condition H € Q we are able to find an edge e € £, that is included in at
most two parts of the partition. Hence it is the bad partition. |

Theorem 8 If n,m € N and m > (}) — n +4, then fa(H,)) = A" +
A" 4+ ...+ a,_1) where

0 i=1
a,:{ —(Bm+(3)) i=2
—-s(n~2,n—8)(3m+ (3)) - ’,:;f;_i S(n,k)s(k,n—1i) 3<i<n-1

if and only if H has ezactly n vertices, m 4-edges and H = H[4,5] € Q.

Proof. Let H, where H = H[4,5] € Q, be an n-vertex hypergraph with m
4-edges. Next, by Lemma 7, S(n,p) > Par}(H) > Par§(H[4]) = S(n,p)
for p € {1,...,n — 3}. Moreover, Parj(H) = Parj(H[2]) = 0 and
Par}~Y(H) = Par§~'(H[2,3]) = 0, by Theorem 1. Corollary 3 implies
that Par}~%(H[4]) = 3m + (3). Because of Theorem 1, Parj %(H) =
Par3~2(H(3,4])) = Pary~%(H[4]). Using (1) we obtain the expected form
of the polynomial.

Now, we assume that f3(Hi,A), where H; = (X;,&1), has the given form
with specified n,m. The fact f3(H1,A) # 0 implies that every edge of H;
has the cardinality at least three. Theorem 1 determines the order of H;
(I1X1] = n), and according to Parj~!(H;) = Parj~"(H1[3]) = 0 we have
that every edge of H; consists of at least four vertices. Let |E(H1[4])| =
my. Theorem 1 and the pattern (1) imply that the coefficient of A"~2 in
f3(M1, )) satisfies: ~ag = Pary~%(H;) = Par§~%(H1[4]) =3m + (3). On
the other hand by Lemma 2, we can see that Par} ~2(H[4]) = 3m; +(3) —t,
where t is the number of 3-element subsets of X, that are not included in
any 4-edge of H[4]. We thus get

3m+(3) =3mi+(3) -t
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and m; = m+ §. It follows m; > (}}) —n+4 and by Corollary 3 we obtain
the equalities ¢ = 0 and m; = m. The form of f3(H;,A) and Theorem 1
gives

Par}~3(H;) = S(n,n — 3) + Pary~3(H1[3,4,5]) = Pary3(H1(4,5]).
Hence, each \(n —-6,3,0,...,0)-partition is bad in a hypergraph H;[4,5].

-

n
We consider such a partition with 2-element partition parts {v1, v2}, {v3, va},
{vs,ve}. The partition has to be bad with respect to some 4-edges or some
5-edges but it is not possible for such the partition to destroy any 5-edge.
Thus at least one of sets {v1,v2,v3,v4}, {V3,V4, 5,6}, {v1,v2,vs,v6} is a
4-edge of H; and H; € Q. Finally assume that there exists a p-edge in H;
for p > 6. We consider six vertices belonging to this edge and because of
‘H1 € Q we know that this set contains at least one 4-edge of H;, contrary
to the claim that H; is Sperner. [ |
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