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Abstract

It was conjectured in [10] that the upper bound for the strong
chromatic index s'(G) of bipartite graphs is A(G)?, where A(G) is
the largest degree of vertices in G. In this note we study the strong
edge coloring of some classes of bipartite graphs that belong to the
class of partial cubes. We introduce the concept of ©-graph ©(G)
of a partial cube G, and show that s'(G) < x(©(G)) for every tree-
like partial cube G. As an application of this bound we derive that
§'(G) < 2A(G) if G is a p-expansion graph.

Key words: median graph, tree-like partial cube, p-expansion graph,
strong chromatic index.

AMS subject classification (2000): 05C15, 05C12

1 Introduction

A strong edge-coloring of a graph is an edge-coloring in which every color
class is a strong matching, that is, the subgraph induced by the end vertices
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of the edges of any color class is a 1-regular graph. The strong chromatic
indez s'(G) is the minimum number of colors in a strong edge-coloring of
G. Since in ordinary edge colorings color classes form (ordinary) matchings,
it is clear that for any graph G, x'(G) < §'(G).

There are several papers studying this invariant (see e.g. [10, 18, 21])
many of which are concerned with finding the best possible upper bounds on
8'(G) in terms of the largest degree of a graph A(G), yielding an analogue
of Vizing’s theorem on the strong chromatic index. Several conjectures
are known in this respect, one of which claims that for bipartite graphs
s'(G) < A%(G) [10). Whether the bound is indeed correct for all bipartite
graphs is open, yet on the other hand, one can expect better upper bounds
when restricting to some particular classes of bipartite graphs. In this paper
we shall present such a result for the class of p-expansion graph, introduced
in [4], that are related to the well-known median graphs. We will show that
s'(G) < 2A(G) for these graphs, and obtain some partial results for strong
edge colorings of median graphs and tree-like partial cubes. Let us present
the classes of bipartite graphs that we will consider in this paper, along with
their main properties that motivated the study of their strong chromatic
indices.

For u,v € V(G), let dg(u,v) denote the length of a shortest path (also
called geodesic) in G from u to v. A subgraph H of a graph G is an
isometric subgraph if dg(u,v) = dg(u,v) for all u,v € V(H). A subgraph
H of a graph G is convez if for any two vertices u,v of H all shortest paths
between u and v in G are already in H.

The Cartesian product GOH of two graphs G and H is the graph
with vertex set V(G) x V(H) and (a,z)(b,y) € E(GOH) whenever either
ab€ E(G) and z =y or a = b and zy € E(H). The Cartesian product is
commutative and associative. The n-cube (or hypercube) @, is the Carte-
sian product of n copies of K,. Isometric subgraphs of hypercubes are also
called partial cubes. They have been extensively studied, in particular in
recent years [6, 7, 8, 13, 15]. The structure of partial cubes can be well
understood by using the so-called Djokovié- Winkler relation ©, defined on
the edge set of a graph.

Edges e = zy and f = uv of a graph G are in the Djokovié-Winkler
relation © [9, 22] if

dG(xa u) + dG(y,'U) # dG(x) 'l)) + d(;(y,u) .

Relation @ is reflexive and symmetric. If G is bipartite, then © can be
defined as follows: e = zy and f = uv are in relation © if d(z,v) = d(y,v)
and d(z,v) = d(y,u). Winkler's well-known result from [22] states that a
bipartite graph G is a partial cube if and only if relation © is transitive in
G (and so O is an equivalence relation). Clearly in a partial cube G edges
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of a © class form an edge cut set, and the subgraph induced by these edges
is isomorphic to K»,0OP, where P is a subgraph of G. (Note that by the
expression 'the subgraph induced by the set of edges E’ we always mean
the subgraph induced by the end vertices of the edges from E.) Now, since
P is also bipartite, one can derive that edges of each ©-class can be colored
by two colors in such a way that each color class is an induced matching
(see the proof of Theorem 2). This observation lead us to study the strong
chromatic index of (some classes of) partial cubes.

In the next section we consider tree-like partial cubes, introduced in [5},
a natural class of graphs that lies between median graphs and partial cubes.
We prove that s'(G) < 2x(©(G)) for a tree-like partial cube G. In Section
3 we first show that for a p-expansion graph G we have w(©(G)) = A(G).
Then we prove our main theorem that ©-graphs of p-expansion graphs
are chordal, which implies the above mentioned bound for §'(G) for these
graphs. In the last section we present some open problems.

2 ©O-graph of a tree-like partial cube

We start with the definition of median graphs, a very important and well
studied class of graphs, see [16] and the references therein.

A graph G is a median graph if there exists a unique vertex z to every
triple of vertices u, v, and w such that z lies simultaneously on a shortest
u, v-path, a shortest u, w-path, and a shortest w, v-path [19]. The vertex
is called the median of the triple u,v,w. It follows immediately from the
definition that median graphs are bipartite. It is well-known that median
graphs are isometric subgraphs of hypercubes [19].

One of the main characterizations of median graphs involves a so-called
peripheral expansion procedure, which is a special case of an expansion
procedure as introduced by Mulder [19]. This graph operation has been
used to characterize and define several classes of graphs that are related to
median graphs, see [3].

Let G be a (bipartite) graph, and H an isometric subgraph of G. We
say that G' is obtained from G by the peripheral ezpansion of H if G’ is
the graph obtained from the disjoint union of graphs G and H, by addition
of |V(H)| edges between H and the subgraph of G isomorphic to H that
correspond to an isomorphism between the copies of H. We also say that
we obtained G’ from G by ezpanding H. Note: if we expand a subgraph
H of a partial cube G then exactly one new ©-class appears in G’ whose
edges induce an isometric subgraph of G’ isomorphic to HOK>.

It was proved by Mulder that median graphs are precisely those graphs
that can be obtained by successive use of peripheral expansion from K;
in which at every step a convex subgraph is expanded [20]. With the aim
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to get a deeper understanding of median graphs, a more general class of
so called #ree-like partial cubes was introduced as the graphs that can be
obtained from K; by successive use of (ordinary) peripheral expansions.
Several common properties of tree-like partial cubes with median graphs
were established, see [5]. Some other classes of partial cubes, defined by
expansion procedure, were defined and studied in [6].

Similarly as above, we note that in a tree-like partial cube G, the sub-
graph induced by edges of a ©-class E is isomorphic to K2OM, where M
is an isometric (and thus connected) subgraph of G. For an edge ab € E
the set

Usp = {u € V(G) |uv € E and d(u,a) < d(u,b)}

induces the subgraph isomorphic to M (as also the set Up,). We also need
the following observation about the relation ©.

Lemma 1 [12] If a walk P connects the end vertices of an edge e but does
not contain it, then P contains an edge f with eOf.

Let T(G) denote the set of ©-classes of a (tree-like) partial cube G. We
say that ©-classes F}, F> € T(G) are adjacent if there exist edges e; € Fy
and e; € F, which are incident (that is, e; and e; have an end vertex
in common). By ©(G) we denote the intersection graph of ©-classes of
a graph G. That is, the vertex set of ©(G) is T(G) and two vertices in
O(G) are adjacent whenever the respective ©-classes are adjacent. Thus
the ©-graph presents an intersection concept in the sense of [17].

The distance d(e, f) between edges e = zy and f = uv is defined as the
distance between their closest end vertices:

d(e, f) = min{d(z, u), d(z,v), d(y, v), d(y, v)}.
Note that x(H) denotes the chromatic number of a graph H.
Theorem 2 For a tree-like partial cube G,
§'(G) < 2x(0(G)).

Proof. Let G be a tree-like partial cube. Note that G is a connected
bipartite graph. If G is K, the theorem is trivially true. Otherwise, G’ has
at least one ©-class. We claim that edges of each ©-class can be colored by
two colors a; and ap such that the subgraph A; induced by edges of «; is
isomorphic to 1-regular graph. (We will use this coloring of @-classes also
in the final construction.)

Let E be a ©-class of G. Edges of E induce a subgraph isomorphic to
K,0M where M is a connected subgraph of G, and all edges of E project
to K2 by this representation. Since M is also bipartite, we may partition
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its vertices into two independent sets X, X2, and color an edge of E by
o; if and only if their end vertices are in X;. Thus we clearly obtained a
strong coloring ¢’ of edges of a ©-class F using two colors. Note that by
this coloring for any two edges e, f in the ©-class E, we have that d(e, f)
is even if and only if ¢/(e;) = ¢'(f;)

Choose a minimum coloring ¢ of ©(G) (that is, a coloring with x(©(G))
colors). Let E;, Fs,..., E; be the O-classes of G that are colored by the
same color with respect to ¢. Thus no two ©-classes E;, E; are adjacent in
©(G), and so no two edges e; € E;,e; € E; are incident in G. We claim
that we can color all edges of F; U...U E; by two colors in such a way
that no two edges at distance 1 are colored by the same color. (This claim
clearly suffices for the proof of the theorem.)

Without loss of generality choose an edge e; € E; and set ¢'(e;) = o
(let e; = z1y1). First of all, by this choice, colors of all edges of E; are
determined (by the construction from the second paragraph of this proof).
Colors of edges in other © classes Fa,...,FEy are defined recursively as
follows. If a ©-class E; has the property that no ©-class E; exists such
that E; and E, lie in different connected components of G — Ej, then for
every f € E; we set ¢'(f) = ay if d(f,e1) is even, and ¢'(f) = ap if d(f, €1)
is odd. On the other hand if there is such a ©-class Ej, then colors of edges
from E; are determined in one of the next steps, after the edges of E; are
colored. Clearly, by repeating this coloring procedure, all colors of edges
from E) U...U Ej, are determined. We claim that this coloring is strong,
that is, any two edges from E; U B, U... U E; at distance 1 are colored
differently.

This claim clearly holds for edges of E;. So assume first that E; is any
other O-class, and let ¢ € E), €' € E; be edges at distance 1. Clearly E;
lies in one component of G — E), and assume z; also lies in this component.
Since G is bipartite, and e and ¢’ are from different ©-classes, we infer that
precisely one end vertex of €’ is at distance 1 to precisely one end vertex of
e. Suppose that d(e;, e) and d(e;,e’) are of the same parity. Then we find
that d(e;,e) = d(e1,€') + 2. Now, using Lemma 1 we infer the existence
of an edge in relation © with ¢’ which lies on the path between e; and
e in Uz,y, (since G is a tree-like partial cube, Uy, ,, is connected, and so
such path exists). We deduce that there is an edge from E; which connects
two vertices of Uy,,,. This is a contradiction with E; and E; being non
adjacent in ©(G). Thus distances of e and e’ from e; are of different parity,
and so they are colored by different colors by ¢'.

Now, let e € E;, f € E; (both i and j different from 1 but not necessarily
distinct) be two edges at distance 1. As noted earlier, they lie in the same
component of G — Ej, and let z; be an end vertex of e; = z;y; which also
lies in this component. (We may assume that no ©-class Ej exists such
that E; or F; would lie in the other component of G — E}, as E;. Namely, if
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this is the case, we can translate the problem by observing the coloring of
E}, and then use the part of the definition that involves distances.) Again
we infer that one end vertex of e = zy, say z, is closer to z; than the
other, and analogously, let d(u,z1) < d(v,z,) where f = uv. Suppose
d(u,z) = 1. Then, as G is bipartite we find d(z:,7) # d(z1,u), moreover
|d(z1,z) — d(z1,u)] = 1. This readily implies that e and f are colored
differently. If d(u,z) = 2, we may assume without loss of generality that v
and z are adjacent (the possibility when v and y are adjacent can be treated
analogously). Then, since z is closer to z; than y, we find by Lemma 1
that there is an edge of E; that lies on a shortest path between z and z;.
Hence the ©-class E; lies in the other component of G — E; as E, contrary
to our assumption. The final case is d(u,z) = 3 which implies that v and y
are adjacent. Since G is bipartite we infer d(zy,u) is of different parity as
d(zy,z) which implies e and f are colored differently. By the observation
from the end of the third paragraph of the proof we infer that ¢ is a strong
edge coloring of G. m]

Corollary 3 For a median graph G,
§'(G) < 2x(0(G)).

3 Strong edge coloring of p-expansion graphs

Another subclass of tree-like partial cubes are the so-called p-ezpansion
graphs, treated in [4]. They are the graphs that can be obtained by succes-
sive use of peripheral expansions from K; in such a way that at each step
the expanded graph H is

e one vertex, or

s a union of maximal hypercubes in G with nonempty common inter-
section.

It turns out that also in the second case H is an isometric subgraph,
and so the expansion is well-defined. This class was introduced in relation
with the cube graph transformation. More precisely, it was proved that
chordal graphs are precisely the cube graphs (that is, intersection graphs of
maximal hypercubes) of p-expansion graphs [4]. This result was established
to complement a similar theorem for dually chordal graphs. In fact it is the
rather close relation of p-expansion graphs with chordal graphs that will
help us to prove the bound for their strong chromatic index.

By clique we mean a maximal complete subgraph of a graph.
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Lemma 4 Let G a nontrivial p-ezpansion graph. For every cliqgue K, in
O(G) there ezists a family of mazimal hypercubes Hy,Hs,...,H; in G,
such that every vertex of Hy N Ho N ... N Hy is incident with all ©-classes
of K,.

Proof. The proof is by induction on the order of G. If G = K, the
assertion is trivially correct. Let G' be a p-expansion graph of order n, and
let it be obtained from a (smaller) p-expansion graph G by one of two the
expansion operations.

First, assume we expand a vertex z in G (to obtain an edge zz'). Then
by induction hypothesis the assertion is true for all cliques in ©(G). Clearly,
O(G") can be obtained from ©(G) by adding a vertex (that corresponds to
O-class (edge) zz'), that is adjacent to some vertices — ©-classes — which
are all adjacent. Hence by one larger clique appears in ©(G’), and there is
a unique family of hypercubes (including zz') that has a nonempty inter-
section (vertex z) and z is incident to all ©-classes of this clique.

Assume now that G is obtained from G by expanding a union of max-
imal hypercubes from U = {H},Hj,...,Hy} in G with H{NH; N...N
Hy, # 0. Then a new O-class E appers that is incident with all ©-classes
Ey, B,,...,E, that lie in hypercubes from U, and also with some other
"border” ©-classes Fi,Fy,...,F,, which are incident (but not lie) in the
hypercubes from U. Consider an arbitrary clique K in ©(G'). If K does
not contain vertex E, then the family of maximal hypercubes which enjoy
the assertion of the theorem appears also in G. Note this family does not
contain any hypercube from U (otherwise E would be incident to the inter-
section of these hypercubes, and hence it would be in K). Thus this family
of hypercubes is the same in G’ as in G, and so it also enjoys the assertion
of the theorem in G'.

Let us now assume that the clique X contains E. Hence all its ver-
tices are ©-classes from {E, E,...,E., F1,F,,...,F;, E}. Without loss
of generality we may denote the verticesof C by B, ..., Ey, Fy,...,Fy, E,
where 0 < m < sand k < r. f m = 0, then K is clearly induced
by {E:,E,,...,E. E}. In this case hypercubes from U that are all ex-
panded in G’ form the family of maximal hypercubes, and the new inter-
section is obtained as expanded intersection of expanded hypercubes (that
is nonempty by definition of p-expansion graphs). Clearly all vertices of
the intersection are incident with all @-classes from K.

In the remaining case (mm > 0) note that vertices E1,..., Ey, Fi,..., Fn
formed a clique already in ©(G). Hence by induction there is a family of
maximal hypercubes Hi,..., Hy in G such that every vertex from HiN...N
H, is incident with an edge from any of the O-classes E; ..., Ey, Fi,..., Fn.
Since every hypercube that is incident with Hy N...N H, must in fact be
one of Hi,...,H; (because the clique is maximal complete subgraph), we
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derive that at least one of these hypercubes is from U. Indeed, otherwise
HyN...N H would not be incident with Hj U H; U...U H), but then it
would be impossible that E is in K, which is a contradiction.

Denote by Hi,...H;, where t < ¢, the hypercubes that are from U.
Obviously hypercubes Hy4...,H are in the "border” - incident with
hypercubes from U, and H; N...N H, is also in U. Now in G’ hypercubes
H,,..., H; become by one dimension larger. The vertices in the intersection
of hypercubes Hy,...,H; in G’ are incident with all ©-classes as in G and
to E. The proof is complete. o

Corollary 5 For e p-expansion graph G,
w(0(G)) = A(G).

Proof. Clearly w(©(G)) > A(G). Set r = w(©(G)). Let K, be the largest
clique in ©(G). By Lemma 4 there exist vertices that are incident to all
©-classes of K,. Hence, A(G) > r. m}

Figure 1 shows that the above assertion does not hold for all tree-like
partial cubes. In the graph G on this figure ©(G) = Kg, hence w(0(G)) =
6, while A(G) = 5.

Figure 1: Tree-like partial cube

Recall that a graph is called chordal if it does not have any induced
cycle of length greater than 3. Note that chordal graphs are perfect which
implies x(G) = w(G) for every chordal graph G, cf. [11].

Theorem 6 Let G be a p-expansion graph. Then ©(G) is a chordal graph,

and so
s'(G) £ 2w(O(G)) = 2A(G).
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Proof. Let G be a p-expansion graph. In the proof we will use the
result from [4] that the cube graph Q(G) of a p-expansion graph G is
always chordal. Assume ©(G) is not a chordal graph, and let C be an
induced cycle in ©(G) of length k, where k¥ > 3. Let E;,...,E; be the
©-classes corresponding to this cycle, such that E;E;;, € E(O(G)) for all
i=1,...,n-1, EyE; € E(O(G)), and all other O-classes E; and E; of
this cycle are not adjacent.

Let H; and H; be maximal hypercubes such that H; contains some edges
of E;, and H; contains some edges of E;, where E; and E; are nonadjacent
©-classes. Clearly by the structure of ©-classes in hypercubes, every vertex
of H; is incident to an edge of E; and similarly every vertex of Hj is incident
to an edge of E;. Thus hypercubes H; and H; have no vertex in common,
and are nonadjacent in Q(G).

Consider @-classes E; and E, from the cycle C. Since they are adjacent,
there exist edges e; € E; and e; € E; that are incident, but they may as
well lie in some 4-cycle. Suppose first that they lie in some 4-cycle. Denote
by H; a maximal hypercube that contains this 4-cycle, and note that every
vertex of H, is incident with edges from both ©-classes. Hence the O-
class Fj is not incident with the hypercube H; (because E; and E; are not
adjacent), yet it is incident with an edge from E,. Denote by H; a maximal
hyper cube that contains edges of E3 and is incident or contains an edge
from E,. It is clear that H; and H3 do not have a common vertex. It
is possible that there exists a maximal hypercube H,, that contains edges
from E,, and is incident with H; as well as with H;. If not, then there
is a sequence of maximal hypercubes which we denote by H3,...H;? that
all contain edges from E, and Hj has nonempty intersection with Hit! for
alli =1,...r, — 1, H} has an empty intersection with Hj if |i — j| > 1,
H} is the only hypercube among these that has a nonempty intersection
with H; and Hj? is the only hypercube among these that has a nonempty
intersection with Hg. In other words hypercubes Hy, H3,..., 22, Hs form
an induced path in @Q(G). It is clear that the hypercubes Hj,..., H}? are
all pairwise disjoint with any hypercube from Hjy, ..., Hy, because they all
posses edges from E,. We started with the case that hypercubes E; and
E5 cross in some cycle. In the other case simply define H; as a maximal
hypercube that contains e; and H, a maximal hypercube that contains e,.
(Note that if H; = H, then we are in the previous case when ©-classes
Ccross.)

We continue this way so that for each ©-class E; we either define a
maximal hypercube H; that contains edges from E;, or, if necessary, more
maximal hypercubes H},... H[* that all contain edges from E; and that
they form an induced path in Q(G) together with E;_; on one side and E;4,
(or E, if i = n) on the other side. It is easy to see that these hypercubes
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together form an induced cycle in Q(G) that is of length at least k. This is
a contradiction with the fact that Q(G) is chordal. The proof is complete.
a

Figure 2: Median graph with a strong edge coloring

At first we suspected that a similar result can be proved for median
graphs. In fact it was posed as a problem in [2] whether x(©(G)) = A(G)
for every median graph G. However, the answer is negative as one can see
in the example G depicted in Figure 2. For this graph ©(G) is the join of
K3 and Cj, which clearly has the chromatic number 6, while A(G) = 5.

On the other hand, the strong edge coloring of this graph (see Figure
2) shows s'(G) < 10, which is thus not greater than 2A(G). (Of course
this coloring is different from the ”canonical coloring” from the proof of
Theorem 6, where in each ©-class there are only two colors.) The question
remains whether there is a median graph such that s'(G) > 2A(G).

4 Concluding remarks

1. The concept of the ©-graph of a partial cube seems to be interesting in
its own right. For instance in [13, 14] some properties of partial cubes in
relation with ©-graphs have been established. In particular, partial cubes
whose ©-graphs are 2-connected, trees, and complete graphs, respectively,
have been characterized.

In [1) the so-called graphs of acyclic cubical complexes (ACC graphs for
short) were introduced as the graphs that can be obtained by successive
use of peripheral expansions from K; such that in each step a hypercube
is expanded. It has been proved that the cube graph @ (G) of an ACC
graph G is a dually chordal graph [1], and conversely, every dually chordal
graph is the cube graph of some ACC graph [4]. In Theorem 6 we proved
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that @-graph of a p-expansion graph is chordal, by using a result from [4].
However, it is not true that every chordal graph can be obtained as the
©-graph of some p-expansion graph, since in [13] it was shown that among
trees only paths can be obtained as ©-graphs of partial cubes.

We pose a related problem concerning ACC graphs and dually chordal

graphs.
Problem 1 Let G be ACC graph. Is ©(G) a dually chordal graph?

2. We found a strong edge coloring for p-expansion graphs that is bounded
by a linear function in A. The natural question is whether there are any
other such interesting previously known classes of (bipartite) graphs. Re-
lated question, concerning the structure of the tree-like partial cubes, is
also natural.

Problem 2 Is there some other class of tree-like partial cubes such that
x(6(G)) = w(6(G)) and/or w(O(G)) = A(G)?

A partial answer can be obtained by the following observations. (Let
A® B denote the join graphs A and B, that is, the graph obtained from the
disjoint union of A and B by joining every vertex of A with every vertex
of B by an edge.)

Lemma 7 [14] Let G and H be partial cube. Then
©(GOH)=0(G)d O (H).

Lemma 8 Let G and H be partial cubes such that w (0(G)) = A(G) and
w(O(H)) = A(H), then

w (0(GOH)) = A (GOH).

Proof. This assertion follows from the above formula © (GOH) = © (G)®
© (H) . Indeed, we get w (O(GOH)) = w(O(G)) + w (0(H)) and by defini-
tion of the Cartesian product A (GOH) = A(G) +A(H). O

Combining the lemma, the fact that tree-like partial cubes are preserved
by Cartesian multiplication [5, Corollary 3.4], and results of this paper we
derive

Proposition 9 Let G and H be tree-like partial cubes such that x (© (G)) =
w(0(Q)) = A(G) and x (© (H)) =w (O(H)) = A(H). Then

s'(GOH) < 2A (GOH).
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Hence we can find new families of graphs with the property s'(G) <
2A(G) from the existing such families.

3. We pose the question from Section 3 about the strong chromatic index
of median graphs as follows.

Problem 3 Is 8'(G) < 2A(G) for every median graph G?

If the question has a negative answer, one can ask if there is some
other constant c such that the strong chromatic index of median graphs is
bounded above by cA.
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