Super Edge-Magic Labelings of Book Graphs B_n *

Yang Yuansheng Xi Yue Xu Xirong Meng Xinhong
Department of Computer Science
Dalian University of Technology
Dalian, 116024, P. R. China
e-mail: yangys@dlut.edu.cn

Khandoker Mohammed Mominul Haque Department of Computer Science and Engineering Shahjalal University of Science and Technology Sylhet-3114, Bangladesh

Abstract

A graph G is called super edge-magic if there exists a bijection f from $V(G) \cup E(G)$ to $\{1,2,\ldots,|V(G)|+|E(G)|\}$ such that f(u)+f(u)+f(uv)=C is a constant for any $uv \in E(G)$ and $f(V(G))=\{1,2,\ldots,|V(G)|\}$, $f(E(G))=\{|V(G)|+1,|V(G)|+2,\ldots,|V(G)|+|E(G)|\}$. R. M Figueroa-Centeno et al. provided the following conjecture: For every integer $n \geq 5$, the book B_n is super edge-magic if and only if n is even or $n \equiv 5 \pmod{8}$. In this paper, we show that B_n is super edge-magic for even $n \geq 6$.

Keywords: book graph, super edge-magic labeling, vertex labeling, edge labeling

1 Introduction

Let G = (V, E) be a simple graph with p(G) = |V| vertices and q(G) = |E| edges, and let V(G) and E(G) denote the vertex set and the edge set of G, respectively. A bijection f from $V(G) \cup E(G)$ to $\{1, 2, \ldots, p+q\}$ is

^{*}This research is supported by CNSF 60373096, 60573022 and SRFDP 20030141003.

called an edge-magic labeling of G if there exists a constant C, called the valence of f, such that f(u) + f(v) + f(uv) = C for any edge $uv \in E(G)$. An edge-magic labeling f of G is called a super edge-magic labeling if $f(V(G)) = \{1, 2, \ldots, p\}$ and $f(E(G)) = \{p+1, p+2, \ldots, p+q\}$. We say that G is super edge-magic if there exists a super edge-magic labeling of G.

Kotzig and Rosa ^[1] introduced the notion of edge-magic labelings (in [1], edge-magic labelings are called magic valuations). They proved that complete bipartite graphs, cycles and caterpillars are edge-magic, and that the complete graph K_n is edge-magic if and only if n=1,2,3,5 or 6. They also conjectured that trees are edge-magic. Enomoto et al. ^[2] introduced the notion of super edge-magic labelings. They proved that the cycle C_n is super edge-magic if and only if n=1 or n=1, and the complete graph K_n is super edge-magic if and only if n=1, 2 or 3. They also conjectured that trees are super edge-magic. In addition, they proved that if $n\equiv 0 \pmod{4}$, then the wheel graph W_n of order n=1 is not edge-magic.

For the literature on super edge-magic graphs we refer to [3] and the relevant references given in it.

Let n be a positive integers, the book graph B_n is defined by

$$V(B_n) = \{v_i \mid 1 \le i \le 2n+2\},$$

$$E(B_n) = \{v_1v_i, v_iv_{i+n+1}, v_{n+2}v_{i+n+1} \mid 2 \le i \le n+1\} \cup \{v_1v_{n+2}\}.$$

In [4], R.M Figueroa-Centeno et al. proved that B_n is not super edge-magic for $n \equiv 1, 3, 7 \pmod{8}$. They show that B_n is super edge-magic for n = 2, 5 and B_4 is not super edge-magic. They conjectured: For every integer $n \geq 5$, the book B_n is super edge-magic if and only if n is even or $n \equiv 5 \pmod{8}$. In this paper, we show that B_n is super edge-magic for even $n \geq 6$.

2 Main Result

Theorem 2.1 The book B_n is super edge magic for every even $n \geq 6$.

Proof. Let C = (11n + 12)/2. We define a function:

$$f: V(B_n) \cup E(B_n) \to \{1, 2, \dots, 5n+3\}$$

according to the following two cases:

Case 1: $n \equiv 0 \mod 4$, say n = 4k, then p = 8k + 2, p + q = 20k + 3,

C = 22k + 6.

Case 1.1. For n = 8, we give the total labeling of B_8 shown in Figure 2.1.

Figure 2.1: A super edge-magic labeling of the graph B_8 .

According to the definition of super edge-magic labeling, it is clear that this assignment provides a super edge-magic labeling for B_8 . Case 1.2. For $n \ge 12$. We label the vertices as follows:

$$f(v_i) = \begin{cases} 2k+2, & i=1, \\ i-1, & 2 \leq i \leq 2k+2, \\ i+1, & 2k+3 \leq i \leq 4k+1, \\ 6k+1, & i=4k+2, \\ 8k+1, & i=4k+3, \\ 4k+3, & i=4k+4, \\ 16k-2i+8, & 4k+5 \leq i \leq 5k+3, \\ 8k+2, & i=5k+4, \\ 16k-2i+9, & 5k+5 \leq i \leq 6k+2, \\ 2k+3, & i=6k+3, \\ 20k-2i+7, & 6k+4 \leq i \leq 7k+2, \\ 20k-2i+6, & 7k+3 \leq i \leq 8k+1, \\ 8k, & i=8k+2. \end{cases}$$

And the edges as follows:

$$f(v_i v_j) = C - f(v_i) - f(v_j).$$

Firstly, we show that f is a bijective mapping from V(G) onto $\{1, 2, \ldots, 8k+2\}$.

Denote by

$$S = \{ f(v_i) \mid 1 \le i \le 8k + 2 \}.$$

Then,

```
\begin{split} S_1 &= \{2k+2 \mid i=1\} = \{2k+2\}, \\ S_2 &= \{i-1 \mid 2 \leq i \leq 2k+2\} = \{1,2,\ldots,2k+1\}, \\ S_3 &= \{i+1 \mid 2k+3 \leq i \leq 4k+1\} = \{2k+4,2k+5,\ldots,4k+2\}, \\ S_4 &= \{6k+1 \mid i=4k+2\} = \{6k+1\}, \\ S_5 &= \{8k+1 \mid i=4k+3\} = \{8k+1\}, \\ S_6 &= \{4k+3 \mid i=4k+4\} = \{4k+3\}, \\ S_7 &= \{16k-2i+8 \mid 4k+5 \leq i \leq 5k+3\} = \{8k-2,8k-4,\ldots,6k+2\}, \\ S_8 &= \{8k+2 \mid i=5k+4\} = \{8k+2\}, \\ S_9 &= \{16k-2i+9 \mid 5k+5 \leq i \leq 6k+2\} = \{6k-1,6k-3,\ldots,4k+5\}, \\ S_{10} &= \{2k+3 \mid i=6k+3\} = \{2k+3\}, \\ S_{11} &= \{20k-2i+7 \mid 6k+4 \leq i \leq 7k+2\} = \{8k-1,8k-3,\ldots,6k+3\}, \\ S_{12} &= \{20k-2i+6 \mid 7k+3 \leq i \leq 8k+1\} = \{6k,6k-2,\ldots,4k+4\}, \\ S_{13} &= \{8k \mid i=8k+2\} = \{8k\}. \end{split}
```

Hence, $S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6 \cup S_7 \cup S_8 \cup S_9 \cup S_{10} \cup S_{11} \cup S_{12} \cup S_{13}$ is the set of labels of all vertices, and

$$\begin{array}{lll} S = & S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6 \cup S_7 \cup S_8 \cup S_9 \cup S_{10} \cup S_{11} \cup S_{12} \cup S_{13} \\ = & S_8 \cup S_5 \cup S_{13} \cup S_{11} \cup S_7 \cup S_4 \cup S_{12} \cup S_9 \cup S_6 \cup S_3 \cup S_{10} \cup S_1 \cup S_2 \\ = & \{8k+2,\ 8k+1,\ 8k,\ 8k-1,8k-3,\ldots,6k+3,\ 8k-2,8k-4,\ldots,\\ & 6k+2,\ 6k+1,\ 6k,6k-2,\ldots,4k+4,\ 6k-1,6k-3,\ldots,4k+5,\\ & 4k+3,4k+2,4k+1,\ldots,2k+4,\ 2k+3,\ 2k+2,\ 2k+1,2k,\ldots,1\} \\ = & \{8k+2,8k+1,\ldots,2,1\}. \end{array}$$

It is clear that the labels of the vertices are different. So, f is a bijection from V(G) onto $\{1, 2, \ldots, p\}$.

Secondly, we show that f is a bijective mapping from E(G) onto $\{8k + 3, 8k + 4, ..., 20k + 3\}$. Denote by

$$D = \{f(v_i v_j) \mid v_i v_j \in E(B_n)\}$$

= \{C - f(v_i) - f(v_j) \cdot v_i, v_j \in V(B_n)\}.

Let $D = D_1 \cup D_2 \cup D_3 \cup D_4$ where

$$\begin{array}{ll} D_1 &= \{f(v_1v_i) \mid 2 \leq i \leq 4k+1\} = D_{11} \cup D_{12}, \\ D_{11} &= \{f(v_1v_i) \mid 2 \leq i \leq 2k+2\} \\ &= \{22k+6-2k-i-1 \mid 2 \leq i \leq 2k+2\} \\ &= \{18k+3,18k+4,\ldots,20k+3\}, \\ D_{12} &= \{f(v_1v_i) \mid 2k+3 \leq i \leq 4k+1\} \\ &= \{22k+6-2k-i-3 \mid 2k+3 \leq i \leq 4k+1\} \\ &= \{16k+2,16k+3,\ldots,18k\}, \end{array}$$

```
D_2
                           = \{ f(v_i v_{i+4k+1}) \mid 2 \le i \le 4k+1 \} = D_{21} \cup D_{22} \cup D_{23} \cup D_{24} \cup D_{24
                                         D_{25} \cup D_{26} \cup D_{27} \cup D_{28} \cup D_{29}
  D_{21}
                           = \{ f(v_i v_{i+4k+1}) \mid i=2 \} = \{ 22k+6-8k-i \} = \{ 14k+4 \},
  D_{22}
                           = \{f(v_i v_{i+4k+1}) \mid i=3\} = \{22k+6-4k-i-2\} = \{18k+1\},\
  D_{23}
                           = \{ f(v_i v_{i+4k+1}) \mid 4 \le i \le k+2 \}
                           = \{22k + 6 - 8k + i - 5 \mid 4 \le i \le k + 2\}
                           = \{14k+5, 14k+6, \ldots, 15k+3\},\
  D_{24}
                           = \{ f(v_i v_{i+4k+1}) \mid i = k+3 \}
                           = \{22k + 6 - 8k - i - 1 \mid i = k + 3\} = \{13k + 2\},\
                          = \{ f(v_i v_{i+4k+1}) \mid k+4 \le i \le 2k+1 \}
  D_{25}
                           = \{22k + 6 - 8k + i - 6 \mid k + 4 \le i \le 2k + 1\}
                           = \{15k+4, 15k+5, \ldots, 16k+1\},\
  D_{26}
                          = \{ f(v_i v_{i+4k+1}) \mid i = 2k+2 \}
                          = \{22k+6-2k-i-2\} = \{18k+2\},\
  D_{27}
                          = \{ f(v_i v_{i+4k+1}) \mid 2k+3 \le i \le 3k+1 \}
                          = \{22k + 6 - 12k + i - 6 \mid 2k + 3 \le i \le 3k + 1\}
                          = \{12k+3, 12k+4, \ldots, 13k+1\},\
                          = \{ f(v_i v_{i+4k+1}) \mid 3k+2 \le i \le 4k \}
  D_{28}
                          = \{22k+6-12k+i-5 \mid 3k+2 \le i \le 4k\}
                          = \{13k+3, 13k+4, \ldots, 14k+1\},\
 D_{29}
                          = \{ f(v_i v_{i+4k+1}) \mid i = 4k+1 \}
                          = \{22k+6-8k-i-1 \mid i=4k+1\} = \{10k+4\},\
 D_3
                          = \{f(v_{4k+2}v_i) \mid 4k+3 \le i \le 8k+2\} = D_{31} \cup D_{32} \cup D_{33} \cup D_{34} 
                                      D_{35} \cup D_{36} \cup D_{37} \cup D_{38} \cup D_{39}
                          = \{ f(v_{4k+2}v_i) \mid i = 4k+3 \}
 D_{31}
                          = \{22k+6-14k-2 \mid i=4k+3\} = \{8k+4\},\
 D_{32}
                         = \{ f(v_{4k+2}v_i) \mid i = 4k+4 \}
                          = \{22k+6-10k-4 \mid i=4k+4\} = \{12k+2\},\
 D_{33}
                         = \{ f(v_{4k+2}v_i) \mid 4k+5 \le i \le 5k+3 \}
                          = \{22k + 6 - 22k + 2i - 9 \mid 4k + 5 \le i \le 5k + 3\}
                          = \{8k+7, 8k+9, \ldots, 10k+3\},\
 D_{34}
                         = \{ f(v_{4k+2}v_i) \mid i = 5k+4 \}
                         = \{22k + 6 - 14k - 3 \mid i = 5k + 4\} = \{8k + 3\},\
D_{35}
                         = \{ f(v_{4k+2}v_i) \mid 5k+5 \le i \le 6k+2 \}
                         = \{22k + 6 - 22k + 2i - 10 \mid 5k + 5 \le i \le 6k + 2\}
                         = \{10k+6, 10k+8, \ldots, 12k\},\
D_{36}
                         = \{ f(v_{4k+2}v_i) \mid i = 6k+3 \}
                         = \{22k + 6 - 8k - 4 \mid i = 6k + 3\} = \{14k + 2\},\
D_{37}
                        = \{ f(v_{4k+2}v_i) \mid 6k+4 \le i \le 7k+2 \}
                         = \{22k + 6 - 26k + 2i - 8 \mid 6k + 4 \le i \le 7k + 2\}
                        = \{8k+6, 8k+8, \ldots, 10k+2\},\
D_{38}
                        = \{ f(v_{4k+2}v_i) \mid 7k+3 \le i \le 8k+1 \}
                        = \{22k + 6 - 26k + 2i - 7 \mid 7k + 3 \le i \le 8k + 1\}
```

$$= \{10k + 5, 10k + 7, \dots, 12k + 1\},$$

$$D_{39} = \{f(v_{4k+2}v_i) \mid i = 8k + 2\}$$

$$= \{22k + 6 - 14k - 1 \mid i = 8k + 2\} = \{8k + 5\},$$

$$D_4 = \{f(v_1v_{4k+2})\} = \{22k + 6 - 8k - 3\} = \{14k + 3\}.$$

Hence, $D = D_1 \cup D_2 \cup D_3 \cup D_4$ is the set of labels of all edges, and

 $\begin{array}{lll} D = & D_1 \cup D_2 \cup D_3 \cup D_4 \\ = & D_{11} \cup D_{12} \cup D_{21} \cup D_{22} \cup D_{23} \cup D_{24} \cup D_{25} \cup D_{26} \cup D_{27} \cup D_{28} \cup D_{29} \cup D_{31} \cup D_{32} \cup D_{33} \cup D_{34} \cup D_{35} \cup D_{36} \cup D_{37} \cup D_{38} \cup D_{39} \cup D_4 \\ = & D_{34} \cup D_{31} \cup D_{39} \cup D_{37} \cup D_{33} \cup D_{29} \cup D_{38} \cup D_{35} \cup D_{32} \cup D_{27} \cup D_{24} \cup D_{28} \cup D_{36} \cup D_4 \cup D_{21} \cup D_{23} \cup D_{25} \cup D_{12} \cup D_{22} \cup D_{26} \cup D_{11} \\ = & \{8k+3, 8k+4, 8k+5, 8k+6, 8k+8, \dots, 10k+2, 8k+7, 8k+9, \dots, 10k+3, 10k+4, 10k+5, 10k+7, \dots, 12k+1, 10k+6, 10k+8, \dots, 12k, 12k+2, 12k+3, 12k+4, \dots, 13k+1, 13k+2, 13k+3, 13k+4, \dots, 14k+1, 14k+2, 14k+3, 14k+4, 14k+5, 14k+6, \dots, 15k+3, 15k+4, 15k+5, \dots, 16k+1, 16k+2, 16k+3, \dots, 18k, 18k+1, 18k+2, 18k+3, 18k+4, \dots, 20k+3 \} \end{array}$

It is clear that the labels of each edge are distinct, and the edge labels are $\{p+1, p+2, \ldots, p+q\}$. According to the definition of super edge-magic labeling, we thus conclude that the graph B_n is super edge-magic for $n \equiv 0 \mod 4$.

 $\{8k+3,8k+4,\ldots,20k+3\}.$

Case 2: $n \equiv 2 \mod 4$, say n = 4k + 2, then p = 8k + 6, p + q = 20k + 13, C = 22k + 17.

Case 2.1. For n = 6, we give the total labeling of B_6 shown in Figure 2.2.

Figure 2.2: A super edge-magic labeling of the graph B_6 .

According to the definition of super edge-magic labeling, it is clear that

this assignment provides a super edge-magic labeling for B_6 .

Case 2.2. For $n \ge 10$. We label the vertices as follows:

$$f(v_i) = \begin{cases} 2k+3, & i=1, \\ i-1, & 2 \le i \le 2k+3, \\ i+1, & 2k+4 \le i \le 4k+3, \\ 6k+4, & i=4k+4, \\ 8k+5, & i=4k+5, \\ 4k+5, & i=4k+6, \\ 16k-2i+16, & 4k+7 \le i \le 5k+5, \\ 8k+6, & i=5k+6, \\ 16k-2i+17, & 5k+7 \le i \le 6k+5, \\ 2k+4, & i=6k+6, \\ 20k-2i+17, & 6k+7 \le i \le 7k+6, \\ 20k-2i+16, & 7k+7 \le i \le 8k+5, \\ 8k+4, & i=8k+6. \end{cases}$$

And the edges as follows:

$$f(v_i v_j) = C - f(v_i) - f(v_j).$$

Similar to the proof in Case 1, we have that this assignment provides a super edge-magic labeling for $n \equiv 2 \mod 4$.

According to the proof of Case 1 and Case 2, we thus conclude that B_n are super edge-magic for even $n \geq 6$. \square

In Figure 2.3 and 2.4, we show our super edge-magic labelings for B_{12} and B_{14} .

Acknowledgements

The authors wish to express their appreciation to the referee for his valuable comments and suggestions in improving the presentation of this paper.

References

[1] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull, 13(1970), pp. 451-461.

- [2] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super-edge-magic graphs, SUT J. Math., (34) No. 2(1998), pp. 105-109.
- [3] J. A. Gallian, A Survey: A Dynamic Survey of Graph Labeling, THE ELECTRONIC JOURNAL OF COMBINATORICS, 5 (2005) #DS6.
- [4] R. M. Figueroa-Centeno, R. Ichishima, F. A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, *Discrete Mathematics*, (2001), pp. 153-168.

Figure 2.3: The super edge-magic labeling of the graph B_{12} .

Figure 2.4: The super edge-magic labeling of the graph B_{14} .