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Abstract: This article is a contribution to the study of block-transitive
automorphism groups of 2-(v, k,1) block designs. Let D be a 2-(v,k,1)
design admitting a block-transitive, point-primitive but not flag-transitive
group G of automorphisms. Let k. = (k,v — 1) and ¢ = pf for prime p. In
this paper we prove that if G and D are as above and ¢ > (2(k-k — & +
1)£)!/4 then G does not admit a Chevalley group E(q) as its socle.
Keywords: block design; block-transitive; point-primitive; automorphism
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1 Introduction

A 2-(v,k,1) design D=( P, B) is a pair consisting of a finite set P of v
points and a collection B of k-subsets of P, called blocks, such that each
2-subset of P is contained in exactly one block. We will always assume
that 2 < k < v.

Let G < Aut(D) be a group of automorphisms of a 2 — (v, k, 1) design
D. Then G is said to be block-transitive if G is transitive on B, and is said
to be point- transitive (point-primitive) if G is transitive (primitive) on P.
A flag of D is a pair consisting of a point and a block through that point.
Then G is flag-transitive if G is transitive on the set of flags.

In 1990, a six-person team [4] classified the pairs (G, D) where G is a
flag-transitive automorphism group of D, with the exception of those in
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which G is a one-dimensional affine group. In this paper we contribute to
the classification of designs which have an automorphism group transitive
on blocks. It follows from a result of Block [2] that a block-transitive
automorphism group of a 2-(v, k, 1) design is transitive on points. In [7] it
is shown that the study of block-transitive 2-(v, k, 1) designs can be reduced
to three cases, distinguishable by properties of the action of G on the point
set P: that in which G is of affine type in the sense that it has an elementary
abelian transitive normal subgroup; that in which G is almost simple, in the
sense that G has a simple nonabelian transitive normal subgroup T whose
centralizer is trivial, so that T < G < AutT; and that in which G has an
intransitive minimal normal subgroup. Much work is needed to achieve this
classification, see [5], {7], and [9]. W. Liu et al have studied the special case
where G = T := Soc(G) is any finite group of Lie type of Lie rank 1 acting
block-transitively on a design in [15]-(18]. Here we focus on the second case,
that is classifying 2-(v, k, 1) designs with a block-transitive automorphism
group of almost simple type under the conditions that G is point-primitive
but not flag-transitive. We prove the following Main Theorem.

Main Theorem. Let D be a 2-(v, k, 1) design admitting a block-transitive,
point-primitive but not flag-transitive automorphism group G. Let k, =
(k,v—1), g =p’ for some prime p and positive integer f. If ¢ > (2(k.k —
kr + 1))/ then Soc(G) ¥ Ex(q).

The assumption g > (2(krk — k. + 1) f)/* is necessary for the proof of
the Main Theorem. Our proof depends on the result of Liebeck and Saxl
[14] about the classification of maximal subgroups of T = Soc(G), and the
properties of the lengths of the suborbits of T, given in Section 3. We
shall continue this work in a forthcoming paper dealing with ¢ small and
using different methods. Recently, the first author treated the case that
T = Eg(q) using a method similar to the one in this article.

Our paper is organized as follows: In Section 2 we collect some prelim-
inary results and in Section 3 we use them to prove the Main Theorem.

2 Preliminary Results

Let D be a 2-(v, k, 1) design defined on the point set P, and suppose that
G is an automorphism group of D that acts transitively on blocks. For a
2-(v,k,1) design, as usual, b denotes the number of blocks and r denotes
the number of blocks through a given point. If B is a block, Gg denotes
the setwise stabilizer of B in G and G, is the pointwise stabilizer of B in
G. Also, GP denotes the permutation group induced by the action of Gg
on the points of B, and so G2 = Gp/G(g).
For a set X, we define X = {(z,y)|zr #y € X}.



Lemma 2.1 (Li [13]). Let D and G be as above. If 9y, ---,1s are the
orbits of Gp on the set B? and Uy,---, ¥, are the orbits of G on P,
then the map o, which maps ¥; to U; if ; C ¥;, is a bijection between
{ili = 1,2,-..,8} and {¥;]j = 1,2,---,t}, and so in particular s = t.
Moreover, the rank of G is s+ 1 and if Y = ¥; then |U;| = b|¢;|.

We will use the following Fang-Li parameters of 2-(v, k, 1) designs, in-
troduced by Fang-Li (see [11]):

k, = (k,v), kr = (k,7) = (k,v—1), by = (b,v), b, =(b,7) = (bv—1).
It is easy to check that
k = kyk,, b=byb., v=rkyb, and r = k,b,..

Corollary 2.2. Let D and G be as in Lemma 2.1, let a € P, and let T be
a Gy-orbit in P\ {a}. Then b.||T'|.
Proof. Let B € . If (o, 0) € ¥; and if o : 9; — U; is as in Lemma 2.1,
then

|¥;| = |G : Gapl = |G : Gal|Ga : Gapl = v|T|.

Therefore, v|['| = bly;|, ie. kyby|T'| = byby|hs|. Thus k,|[| = b.|9i]. It
follows that b||['| since (ky,br) = 1. a
Lemma 2.8. Let G be a transitive group on the point set P and T :=
Soc(G). Let a € P and let T be a Gy-orbit in P\ {a}. ThenT is a union
of orbits of Ty, all having the same size.

Proof. Let T" be an orbit of G,. Then I is invariant under T, and so
I'=AUA2U---A,, where A;(2 = 1,2,---, ) are orbits of T,,. Suppose
that € A; and v € A,. Then there exists an element g in G, such that
v = 39, and so

|Aa] = [yTe| = |877e| = |67=9| = 67| = |As].

(]
Lemma 2.4 (Liebeck and Saxl [14]). Suppose that T := Soc(G) & E7(q)
is a simple exceptional group of Lie type over GF(q), where ¢ = pf for a
prime p and positive integer f. Let M be a mazimal subgroup of G not
containing T, then one of the following holds:

(a) IM| < ¢*|G : T);

(b) TN M is a parabolic subgroup of T';

() T N M is isomorphic to one of (i) (Ee(q) o (¢ — 1)/d).e41-2;
(i) ( Eo(q) © (¢ + 1)/d).e_1.2; (iii) (SL2(q) o De(q)).d; or (iv) Er(q*).d.
In all cases d = (2,9 - 1), and ec = (g9 —€,3) fore = £1.

Let W be the Weyl group associated with the simple group T of Lie
type, N the monomial subgroup of T, and H the diagonal subgroup of T'.
From [10, Theorem 7.2.2], we know that there exists a homomorphism ¢ :
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N — W such that N/H = W. Let ® be the root system corresponding to T’
with fundamental system II, also &+ (&™) be the set of positive (negative)
roots in ®, respectively. If J is a subset of the set II of fundamental roots
and Vj is the subspace of V spanned by J, then ®; denotes the set of roots
of ® lying in the subspace V;. We use the standard labelling for Dynkin
diagrams with fundamental roots «; as in [3, pp.250-275).

For the basic notions and results of design theory and finite permutation
groups, the reader is referred to [1} and [19]. We will follow the notation
of [10] for simple groups of Lie type. Also, if n is a positive integer and
p is a prime number, then |n|, denotes the p-part of n and |n|, denotes
the p'-part of n. In other words, |n], = p* where p* | n but p*+! { n, and

[nly = n/lnlp.

3 Proof of the Main Theorem

Let D and G satisfy the hypotheses of the Main Theorem. Assume by way
of contradiction that T := Soc(G) & Ex(q), where ¢ = p/ > (2(krk — kr +
1)f)1/4 and p is prime.

In any 2-(v, k, 1) design with parameters b, v, k, 7,

kb=vr
and
k(k - 1)b=v(v-1).

Using the Fang-Li parameters, we have v =1+ k.(k — 1)b,.
Now let T := Soc¢(G) and T, = TN G,, where a € P. Let A be any
To-orbit in P\ {a} with size z, and I" a nontrivial suborbit of G, such that

A CT. Since ‘JC% = ]l,l%, we have

|G :T|=|Ga: Tal,
and
Gal _ IGal _ |Tul Cal _
|Gaﬁ| - |Taﬁ| ITaﬁ| IT l

where 8 € A. Since v = 1+ kp(k — 1)by, we have 3~ <1+ k.(k—1). By
Corollary 2.2 we have b,||[['|, and b, < |T'|. Thus

v v

e T S Sh

It} =

z|G : T},

Y <1tk (k - 1),

and so we have the following property:
(Py) % < (krk — kr + 1)|G : T|, where z is the size of a T,-orbit in

P\ {a}.
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Since T is not a Frobenius group (because a Frobenius group has a reg-
ular nilpotent normal subgroup), there exist o, 8 € P such that |Tog| # 1.
Then 2 = ]—:{%ITITQ,@ |2 2%];. Combining with (P;), we get the following
property:

-
(P2) ﬁ < (kok — ky +1)|G : T).

To prove the Main Theorem, we also need the following very useful
property:

(Ps) If (v—1,q) =1, then there exists in P \ {a} a To-orbit of size y
such that y | |Talp.

In fact, let ¢ be the size of any To-orbit in P \ {a}. Suppose to the
contrary that ¢ { [To|yr. Since t | [Ta|, we have p | t. Furthermore, since
P\ {a} is a union of T,-orbits, p | v — 1. Thus p | (v — 1,¢), which
contradicts (v —1,9) = 1.

Since G is primitive on P, G, is a maximal subgroup of G for any
a € P. Hence M = G, satisfies one of the three cases in Lemma 2.4. We
will rule out these cases one by one.

Case 1: |[M| < ¢*|G: T).

By (P2)a

IT| < (kek — ke + D)ITal?IG : T| < (kck — ke + )¢ |G : T (1)

Since | B7(g)| = ¢®¥(¢*®—1)¢"-1Xg"2-1X¢'°~1)X¢®-1)¢®~1Xq*-1)/d,
then

I i V1 Cat 1t it Yt VGtV it
& = o

q
>"—""—'«‘?‘1>q > (krk — ke + 1)|G : T),
contradicting (1).
Case 2: TN M is a parabolic subgroup of T .
Let Il = {a;, a2, -, a7} be the fundamental root system of E7(g), let
J; =II — {a;}, and P;, be the parabolic subgroup of E(g) determined by

The following TABLE 1 lists the order of T, and the value of v =
|T'})/|Ta| in the corresponding subcases.

Subcase 2.1: T, = Pj,. By (10, Theorem 7.2.2], there exists a ho-
momorphism ¢ : N — W such that N/H = W. Let ¢(ny) = wa,, where
n1 € N, w,, is the corresponding reflection of ; in the Weyl group W.
Now we consider Py, N P}!. Since Py, = (X, H|r € ®* U &®,,), then

Pyl =(X;, Hlr € (2*)™ U(25)™)
(Xr,Hlr € (qﬁ- —{mhu{-a}u q)‘wal(-ll))'

i
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TABLE 1. Subcasos of case 2

Ta 1Tl v
P 63, _ 17(02 — 13¢c® — 13708 — 132¢08 — 13¢o10 _ (918 -1)(q*4-1)(¢%+1)
7y 9 (a—1) e 1)(q 1)(q 1)2(q 1)(q 1)/d T
Py, a%%q—1Xa2 —1)(a® = 1)(g% - 1Xg5 = 1X4® — 1Xq7 = 1)/ (a'8-1)(g7+1)(9*2 —1)(a5+1)(a* +1)
’ s i P
P 63(q — 1)(a2 = 1)2(¢® — 1)(q% - 1)(¢® — 1)(¢® - 1)/d —1(q -1 ~1)(q}4-1)(ql8 1
Jg  9(e— 1) Y e g e ) e(q l)éq -11)‘(;; —l)l(gq —1)1(: —1)
P 634 — 13(q2 — 1)3(q® - 1)2(¢? - 1)/d (g% -1Xq% 1Xq -1}3 —1;:; —1%¢18-1)
gy 9 (a—1)e (e )4(q )/ . (qé-z)(qlgl) (02-1) (‘q -1)
P 63(q — 1)(g? — 1)2(q® - 1)2(¢% — 1)(¢5 - 1)/d 1 4 18
Js 9 (9 )1C ) (q )(q )(q )/ !éq-l)(fz")( N‘" (m“)“ <
P, 83(q — 1)(q2 - 1)2(¢® — 1)(¢% - 1)(g® — 1)(¢® — (g10-1)(g?2-1)(q!4-1)(q18-1)
Jg 9 (a—1)q ) (e Ne )@® = 1)(q¢® ~1)/d lg:-l)(q2-1)(q4 T
Pyy  a%%a—1Xa?—1Xe®—1Xe® ~1Xe® - 1Xe® —1Xg12-1y/¢ (L _=W(aii-1)(el0-1)

(g=1)(g5-1)(g%—1)

It follows that

(X, H|r € (" — {1 })UBy) < Py N

where J' = {ag, o4, 05,06, 07}. Let

P=(X,,Hlre (®f - {})U®y) and U= II X, <Up.

re(@+—-{a1})Nd,,

We claim that U < P. We show that the subgroups generating P all

normalize U. It is clear that H normalizes /. Let r be a positive root. If
s € (®+ —{a;})N® 5, then all roots of the form ir+js withi > 0,7 > 0 are
also in (®+ — {a1})N®,/. Thus the commutator formula (see [10, Chapter
5]) shows that X, normalizes U. Now suppose that r € ®~ N& . Then —r

is not in (&t -

{a1}) N @y, and, if s is any root in (®+ — {ar) N dy, all

roots of the form ir + js with ¢ > 0,5 > 0 are in (®* — {@;}) N ®:. Since
ir+ js involves some fundamental root not in J' with a positive coefficient,
X, normalizes U in this case. Hence U q P. Now we define L to be the
subgroup of G generated by H and the root subgroups X, for all r € & .
Then we have

B=0Ly, 1P=3¢%a-1/¢* - )(&* - D(g" - De* - (& - 1)

Thus T, has an orbit of size

r=

|P.11|'1P3‘11 ~ P

Therefore

IPJll < IPJxl Q(q + 1)(q8 - 1)((1 + 1)

(g—1)

§>q28>(k,k-k,+1)|G:T|



where v is given in the first line of Table 1. This contradicts property (P,).
Subcase 2.2: T,, = P;,. Let ny be the inverse image of wq, under ¢.
Since

Py,
Py

(Xr, Hlr e ®* U d,,),
(Xr, H|r € (®*)"2 U (®4,)™2)
(Xr, Hlr € (2% = {a2}) U {~a2} U @y, (1))

Then
sz nP}": > (X,»,HIT € (Q+ — {ag}) U i)Ja)

where J' = {a;, a3, a5, a6, a7}. Hence
1
\Pr, 0 P32 > 5 ¢®(g - 1*(¢* - 1)%(¢* - 1D*(¢" - 1),

and T, has an orbit of size

po Pnl @ -1)(°—-1)(¢"—1)
|Ppn PR = (g-1)(?-1)(g®-1)

It follows that .
~> g% > (kk—kr +1)|G: T,

contradicting (Py).
Subcase 2.3: T, = Pj,. Let ng be the inverse image of w,, under ¢.

Since

P;, ={(X,, Hlred ud,y),
Py = (X, H|r € (%)™ U(D,)™)
= (X, H|r € (®* — {as}) U {~a3} U @y, (s5))s

then Py,NP}® > (X, Hlr € (9% —{a3})U® ) where J' = {a2, a5, 06, a7},
and
1
{Ps, NP3 > = g - 1% - 1% - 1(¢" - 1).

Thus T, has an orbit of size

__ Pyl _a(@®-1)(ef-1)
x= T < 5 .

It follows that v
- >q® > (krk — kr +1)|G : T,

contradicting (P;).
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Subcase 2.4: T, = Pj,. Let n4 be the inverse image of wa, under ¢.
Since

P;, = (X, Hlre®tud,,),
P.”": = (X,,H|r € (®* - {a4}) U {-a4} U @wo‘(_]q)),

then Py, N P3* > (X, H|r € (8% — {04}) U @) where J' = {a1, a6, a7},
and
1
|Pr N Pj > 5 ¢®(g - 1)*e* - 1)*(¢° - ).

So T, has an orbit of size

e Pul _ 9@-1@ -1 -1)
|Ps, N PFE| (¢-1)°

It follows that v
~> ¢ > (kok =k, +1)|G: T,

contradicting (P;).
Subcase 2.5: T, = Pj,. Let ns be the inverse image of wqy, under ¢.
Since
P, = (X, Hlredtud,),
P;;s = (X, H|r € (®* — {as}) U {—as} U Qwas(‘]s)>,

then P;,NP}* > (X, Hlr € (®+—{as})ud ;) where J' = {1, az, a3, 07},
and
1
1P NP3 > = a%(g - 1" - 1°(¢° - 1).

So T, has an orbit of size

e Pl a(@-1)g"-1)(¢° 1)
1P, 0PI = (a-1*P-1)

It follows that

g > g% > (kok — ky +1)|G: T,

contradicting (P;).
Subcase 2.6: T, = Pj,. Let ng be the inverse image of w,, under ¢.
Since

PJG = (XT,HIT € (I)+ U q)Je)a
P;;s = (Xr, HIT € (@+ - {as}) U {—C!s} U (I)was(_]e)),

then P;,NP}® > (X, H|r € (7 —{ae})Ud,), where J' = {1, @2, 3, 04}
Consequently,

P N P3| > = ¢%%(g — 1)3(e = (& = 1)(g* ~ 1)(e® ~ 1).
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Thus T, has an orbit of size

e P%l 9@ -1 -1)(¢* 1)
|Pss NP5~ (g—-1)%¢-1)

It follows that v
=> ¢® > (kk— k. +1)|G : T,

contradicting (P, ).
Subcase 2.7: T, = Pj,. Let n7 be the inverse image of w,, under ¢.
This time, we have

P;, ={(X;H|redtud,),
P}? = (Xr, Hl?‘ € (@"‘ — {07}) U {—a7} U ‘I’wa,(h))-

Then
PN P_}:’ > (X, Hlre (<I>+—{a7}) udy),

where J' = {a1, a2, 03, a4,05}. Hence
1
|P, N P371 > 5 ¢%(g = 1)*(g* — 1)(g* - 1)(¢® - 1)(¢° ~ 1)(¢® - D).

Thus T, has an orbit of size

_ |Py] q(g® — 1)(¢*2 - 1)
=P S oD -D)

It follows that v
=> ¢® > (kk — ke +1)|G: T,

contradicting (P,).
Case 3: T, is one of the subgroups of Lemma 2.4 (c).

Subcase 3.1: T, = (Es(q) o (¢ — 1)/d).e4+1.2 where e4; = (¢ — 1,3).
Then

1Ta| = 2eT'l”qe’“(qm = 1)(¢° = 1)(¢® — 1)(¢° - 1)(¢® — 1)(¢® — 1)(g - 1),
and (g = (¢ + (& +1)
2e41(g—-1) ’

Since (v —1,q) = 1, we know by (P3) that T, has an orbit of size y such
that

V=

Y < |Taly = —=—(¢"% - 1)(¢° — 1)(¢® — 1)(¢® — 1)(¢® = 1)(¢® — 1)(g — 1).
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It follows that 1
v, _ .
” T i (krk — k. +1)|G : T,
contradicting (Py).
Subcase 3.2: T, = (*E¢(q) o (g + 1)/d).e~1.2 where e_; = (g + 1, 3).
Then

26_1

= a*%(g"% — 1)(¢° + 1)(¢® - 1)(¢® — 1)(¢® + 1)(¢* — 1)(¢ + 1),

|Ta| =

d
- g 1) - 1) 1)
B 2e_1(g+1) ’

and so T, has an orbit of size y such that

v < [Taly = 2712 — (& + (& = 1(g® = 1)(¢° + 1)(¢* = 1)(g + 1)

" It follows that v
7> ¢ > (kk — ke +1)|G: T),

contradicting (P1).
Subcase 3.3: T, = (SL2(q) o De(q)).d. Then

[Tl = (@ - 1)(&® - 1)(¢° - 1)2(a* ~ 1)(&® - 1)%,

and
_ (g - 1)(¢" - 1)(¢2 -1

v= ,
(2 -1)(¢* - 1)(¢°-1)
and so T, has an orbit of size y such that

y < Tl = 26 — 1)(¢* ~ 1)(e° ~ D*g* - 1)(@* = .

It follows that v
e q% > (kek — k. +1)|G : T,

contradicting (P;).
Subcase 3.4: T, = Er(q%).d. Then

|Tal = ¢% (¢° — 1)(¢” — 1)(¢® — 1)(¢® — 1)(¢* — 1)(¢* - 1)(g - 1),

and

v = 2¢F(@+1)(g" + (e +1)(&° +1)(g* + (& + (g +1),
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and so T, has an orbit of size y such that
Y < | Taly = (¢° — (" — 1)(¢° - 1)(@° - 1)(¢* — )(¢* - 1)(g - 1).

It follows that

> =¢% > (kok — ke +1)|G: T),

|
al -

contradicting (P;).
Thus in all cases we get a contradiction. This completes the proof of
the Main Theorem. ]
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