SIGNED EDGE DOMINATION NUMBERS IN TREES

H. KARAMI DEPARTMENT OF MATHEMATICS SHARIF UNIVERSITY OF TECHNOLOGY P.O. BOX 11365-9415 TEHRAN, I.R. IRAN

ABDOLLAH KHODKAR*
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WEST GEORGIA
CARROLLTON, GA 30118
AKHODKAR@WESTGA. EDU

S.M. SHEIKHOLESLAMI†
DEPARTMENT OF MATHEMATICS
AZARBAIJAN UNIVERSITY OF TARBIAT MOALLEM
TABRIZ, I.R. IRAN
S.M.SHEIKHOLESLAMI@AZARUNIV.EDU

ABSTRACT. The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and of all edges having a common endvertex with e. Let f be a function on E(G), the edge set of G, into the set $\{-1,1\}$. If $\sum_{x\in N[e]} f(x) \geq 1$ for each $e\in E(G)$, then f is called a signed edge dominating function of G. The minimum of the values $\sum_{e\in E(G)} f(e)$, taken over all signed edge dominating function f of G, is called the signed edge domination number of G and is denoted by $\gamma_s'(G)$. It has been conjectured that $\gamma_s'(T) \geq 1$ for every tree T. In this paper we prove that this conjecture is true and then classify all trees T with $\gamma_s'(T) = 1, 2$ and G.

Keyword: Tree, Signed edge domination function; Signed edge domination number

1. Introduction

Let G be a graph with the vertex set V(G) and the edge set E(G). We use [1] for terminology and notation which are not defined here. Two

^{*} Research supported by the Faculty Research Grant, University of West Georgia.

[†] Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem.

edges e_1, e_2 of G are called adjacent if they are distinct and have a common end-vertex. The open neighborhood $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighborhood is $N_G[e] = N_G(e) \cup \{e\}$. For a function $f: E(G) \longrightarrow \{-1,1\}$ and a subset S of E(G) we define $f(S) = \sum_{e \in S} f(e)$. If $S = N_G[e]$ for some $e \in E$, then we denote f(S) by f[e]. For each vertex $v \in V(G)$ we also define $f(v) = \sum_{e \in I(v)} f(e)$, where I(v) is the set of all edges at vertex v. A function $f: E(G) \longrightarrow \{-1,1\}$ is called a signed edge dominating function (SEDF) of G, if $f[e] \ge 1$ for each edge $e \in E(G)$. The minimum of the values f(E(G)), taken over all signed edge dominating functions f of G, is called signed edge domination number of G. The signed edge domination number was introduced by G. The signed edge domination function G with G is called G.

In 2002, it was conjectured [3] that for all trees T, $\gamma_s'(T) \ge 1$. In Section 2, we first prove that this conjecture is true. Then we characterize all trees T for which $\gamma_s'(T) = 1, 2$. In Section 3, we characterize all trees T with $\gamma_s'(T) = 3$. All connected graphs G with $\gamma_s'(G) = |E(G)|$ were characterized in [2].

Here are some well-known results on $\gamma'_s(G)$.

Theorem A. (See [3]) Let G be a graph with m edges. Then $\gamma'_s(G) \equiv m \pmod{2}$.

Theorem B. (See [3]) Let u, v, w be three vertices of a tree T such that u is a pendant vertex of T and v is adjacent to exactly two vertices u, w. Let f be an SEDF of T. Then

$$f(uv) = f(vw) = 1.$$

Theorem C. (See [3]) Let T be a star with m edges. If m is odd, then $\gamma'_s(T) = 1$. If m is even, then $\gamma'_s(T) = 2$.

Theorem D. (See [2]) Let G be a connected graph. Then $\gamma'_s(G) = |E(G)|$ if and only if either $G \cong P_n$ for some $n \ (1 \le n \le 5)$ or G is the subdivision of some star $K_{1,n} \ (n \ge 3)$.

2. A PROOF OF THE CONJECTURE

In 2002, Bohdan Zelinka and Liberec [3] showed that for some special classes of trees T, $\gamma_s'(T) \geq 1$, and they conjectured that $\gamma_s'(T) \geq 1$ for every tree T. In this section we prove that this conjecture is true. We also characterize all trees T for which $\gamma_s'(T) = 1, 2$. Throughout this paper $\ell(v)$ denotes the number of pendant edges at vertex v. For i = 1, 2, define T_i to be the collection of all trees of order $n \geq 2$ with exactly i - 1 vertices of even degree and $\ell(v) \geq \lfloor (\deg(v) - 1)/2 \rfloor$ for every vertex v.

Theorem 1. For any tree T=(V,E), $\gamma_s'(T) \geq 1$ and, for i=1,2, $\gamma_s'(T)=i$ if and only if $T \in \mathcal{T}_i$. Also, $T \in \mathcal{T}_1$ implies f[e]=1, for every γ_s' -function f and every edge $e \in E$.

Proof. The statements hold for all trees of order n=2,3,4. Assume T is an arbitrary tree of order $n\geq 5$ and that the statements hold for all trees with smaller order. Let f be a γ_s' -function for T.

Case 1. There is a non-pendant edge $e = uv \in E$ for which f(e) = -1. Let T_1 and T_2 be the subtrees of T - e with $u \in T_1$. Then, $\gamma_s'(T) = f(E(T_1)) - 1 + f(E(T_2))$. For i = 1, 2, the function f, restricted to T_i is an SEDF for T_i , hence, $\gamma_s'(T_i) \leq f(E(T_i))$. By the induction hypothesis, $\gamma_s'(T_i) \geq 1$ and, thus, $\gamma_s'(T) \geq 1$. Notice that if $\gamma_s'(T) \leq 2$ then $2 \leq f(E(T_1)) + f(E(T_2)) \leq 3$. So we may assume without lose of generality that $f(E(T_1)) = 1$. That is, f restricted to T_1 is a γ_s' -function for T_1 . Let e' be any edge in T_1 incident to vertex u. Again by the induction hypothesis, $T_1 \in T_1$ and, hence, f[e'] = 1 in T_1 . This implies f[e'] = 0 in T, a contradiction. Therefore, when $\gamma_s'(T) \leq 2$, all edges e for which f(e) = -1 are pendant edges.

Case 2. The only edges e for which f(e) = -1 are pendant edges. Let $M = \{e \in E \mid f(e) = -1\}$. Let $V_M = \{v_1, v_2, \ldots, v_k\}$ be the degree one end-vertices of the edges in M and let $W_M = \{w_1, w_2, \ldots, w_r\}$ be the remaining end-vertices of the edges in M. Since $n \geq 5$, we may assume k is positive and that $1 \leq r \leq k$. Further, for $1 \leq i \leq r$, we may assume w_i has $k_i \geq 1$ neighbors in V_M . Then, each w_i must have at least $k_i + 1$ neighbors in $V \setminus V_M$, where the adjoining edge e has f(e) = 1. Let t be the number of edges whose end-vertices are both in W_M . Then the number of edges e with f(e) = 1 and which are incident to vertices in W_M is at least $(k_1 + 1) + (k_2 + 1) + \ldots + (k_r + 1) - t = k + r - t$. Since W_M induces a forest, $t \leq r - 1$. Thus, T has at least $k + r - t \geq k + 1$ distinct edges e for which f(e) = 1. That is, $\gamma'_s(T) \geq (k + r - t) - k \geq 1$.

Now, suppose $\gamma_s'(T) = 1$. Then, we must have that r - t = 1. Therefore, W_M induces a tree and, for any γ_s' -function f, every vertex w_i in W_M must have exactly $k_i + 1$ incident edges e for which f(e) = 1. Therefore, since f(E(T)) = 1, every edge e' in T must have an end-vertex in W_M . Moreover, $\deg(v) = 1$ for every vertex $v \notin W_M$. That is, $\ell(v) \ge \lfloor (\deg(v) - 1)/2 \rfloor$ and $\deg(v)$ is odd for every vertex $v \in V$. Therefore, $T \in \mathcal{T}_1$. Further, the construction enforces that f[e] = 1, for every edge e in T.

When $\gamma_s'(T) = 2$, we must have $r - 2 \le t \le r - 1$. If t = r - 2, W_M induces a forest of two subtrees, say T_1 and T_2 , and $\ell(v) \ge \lfloor (\deg(v) - 1)/2 \rfloor$ for each vertex v in W_M . Let T_3 and T_4 be the subtrees induced by the vertices of V which are adjacent to a vertex of T_1 or T_2 , respectively. Since f(E(T)) = 2 and the fact that f(e) = 1 for every edge $e \notin E(T_3) \cup E(T_4)$, it follows that

 $f(E(T_3)) = f(E(T_4)) = 1$, hence, $E(T) = E(T_3) \cup E(T_4)$. Therefore, two vertices in W_M , one in T_1 and one in T_2 , must have a common degree two neighbor, say w, in $V \setminus (V_M \cup W_M)$. That is, $\ell(v) \ge \lfloor (\deg(v) - 1)/2 \rfloor$ and $\deg(v)$ is odd for every vertex $v \in V \setminus \{w\}$. Therefore, $T \in T_2$. If t = r - 1, then W_M induces a tree and exactly one vertex w_i in W_M must have $k_i + 2$ incident edges e for which f(e) = 1. Moreover, every vertex $w_j \in W_M$, $i \ne j$, must have $k_i + 1$ incident edges e for which f(e) = 1. Again, $T \in T_2$.

Conversely, let $T \in \mathcal{T}_1$. By first part of the proof we have $\gamma_s'(T) \geq 1$. If n = 2 then obviously $\gamma_s'(T) = 1$. Let $n \geq 3$. Define $f : E \to \{1, -1\}$ by: f(e) = -1 for exactly $\lfloor (\deg(v) - 1)/2 \rfloor$ pendant edges e at v if $\deg(v) \geq 3$ and f(e') = 1 for the remaining edges e' at v. It is easy to see that f(E(T)) = 1. Therefore, $\gamma_s'(T) = 1$. The case $T \in \mathcal{T}_2$ is similar.

The following result is an immediate corollary of the structure of γ'_s functions of $T \in \mathcal{T}_i$, i = 1, 2.

Corollary 2. Let $T \in \mathcal{T}_i$, i = 1, 2, and let f be a γ'_s -function of T. Then f(v) = 1 if $\deg(v) \geq 3$ and odd, and f(v) = 2 if $\deg(v)$ is even.

3. Trees with signed edge domination number 3

In this section we characterize the trees T with $\gamma'_s(T) = 3$. First, we study trees T with $\gamma'_s(T) = 3$ for which there is a γ'_s -function, say f, such that f(e) = 1 for every non-pendant edge e in T.

Let \mathcal{B}_1 be the collection of trees, T, which satisfy one of the following properties:

Type 1: T has exactly two vertices of even degree and $\ell(v) \ge \lfloor (\deg(v) - 1)/2 \rfloor$ for each $v \in V(T)$, or

Type 2: each vertex of T has odd degree and there exists exactly one vertex $v \in V(T)$ such that $\ell(v) = (\deg(v) - 3)/2$, and $\ell(u) \ge (\deg(u) - 1)/2$ for each $u \in V(T - v)$.

If $T \in \mathcal{B}_1$, then $\gamma_s'(T) \geq 3$ by Theorem 1. Assume T is of Type 1 and u and w are the vertices of even degree. Let T' be obtained from T by adding two pendant edges uu' and ww'. Then $\gamma_s'(T') = 1$, by Theorem 1. Moreover, if f is a $\gamma_s'(T')$ -function then f(u) = f(w) = 1 in T' by Corollary 2. Since $\deg(u), \deg(w) \geq 3$ in T', there is a pendant edge e at u and a pendant edge e' at w with f(e) = f(e') = -1. So we may assume f(uu') = f(ww') = -1. Therefore, f(E(T)) = 3 and hence $\gamma_s'(T) = 3$. Similarly, if T is of Type 2 then $\gamma_s'(T) = 3$. The following lemma shows that, under a certain condition, the inverse is also true.

Lemma 3. Let T be a tree of order $n \geq 4$ with $\gamma'_s(T) = 3$. If T has a γ'_s -function, say f, such that f(e) = 1 for every non-pendant edge e in T then $T \in \mathcal{B}_1$.

Proof. If n=4 then the result is trivial. Now let $n \geq 5$. Following the notations in the proof of Theorem 1, Case 2, since $\gamma'_s(T) = 3$ we have $r-3 \leq t \leq r-1$.

Case 1. t = r - 1.

Then W_M induces a tree. Now either exactly two distinct vertices w_i and w_j in W_M must have $k_i + 2$ and $k_j + 2$ incident edges e, respectively, for which f(e) = 1. So $T \in \mathcal{B}_1$ (Type 1). Or exactly one vertex w_i in W_M must have $k_i + 3$ incident edges e for which f(e) = 1. So $T \in \mathcal{B}_1$ (Type 2).

Case 2. t = r - 2.

Then W_M induces a forest of two subtrees, say T_1 and T_2 , and $\ell(v) \geq \lfloor (\deg(v)-1)/2 \rfloor$ for each vertex v in W_M . Let T_3 and T_4 be the subtrees induced by the vertices of V which are adjacent to a vertex of T_1 or T_2 , respectively. Since f(E(T))=3 and the fact that f(e)=1 for every edge $e \notin E(T_3) \cup E(T_4)$, it follows that $2 \leq f(E(T_3)) + f(E(T_4)) \leq 3$. If $f(E(T_3))=f(E(T_4))=1$, then there is precisely one edge $e' \notin E(T_3) \cup E(T_4)$ with f(e')=1 and with end-vertices in T_3 and T_4 . So $T \in \mathcal{B}_1$ (Type 1). If $f(E(T_3))=1$ and $f(E(T_4))=2$ (the case $f(E(T_3))=2$ and $f(E(T_4))=1$ is similar) then exactly one vertex in T_2 , say w_j , must have precisely k_j+2 incident edges e with f(e)=1 and for each vertex $w_i \in W_M$, $i \neq j$, there are precisely k_i+1 incident edges e with f(e)=1. Finally, two vertices in W_M , one in T_1 and one in T_2 , must have a common degree two neighbor in $V \setminus (V_M \cup W_M)$. So, $T \in \mathcal{B}_1$ (Type 1).

Case 3. t = r - 3.

Then W_M induces a forest of three subtrees T_i , i=1,2,3, and $\ell(v) \geq \lfloor (\deg(v)-1)/2 \rfloor$ for each vertex v in W_M . Let T_{i+3} , i=1,2,3, be the tree induced by the vertices of V which are adjacent to a vertex of T_i . Since f(E(T))=3 we have $f(E(T_4))=f(E(T_5))=f(E(T_6))=1$. Now two cases are possible. Either two vertices in W_M , one in each T_i (without loss of generality we may assume i=1,2) and two vertices in W_M , one in each T_i (i=2,3), must have common degree two neighbors in $V\setminus (V_M\cup W_M)$. So $T\in\mathcal{B}_1$ (Type 1). Or three vertices in W_M , one in each subtree T_i , i=1,2,3, must have a common degree three neighbor in $V\setminus (V_M\cup W_M)$. So, $T\in\mathcal{B}_1$ (Type 2).

Now we study trees T with $\gamma_s'(T)=3$ for which every γ_s' -function of T assigns -1 to at least a non-pendant edge of T. Let $\mathcal A$ be the collection of trees, T, in which $\gamma_s'(T)=2$ and $\ell(v)\geq \lfloor \deg(v)/2\rfloor$ for each $v\in V(T)$. Obviously, $\mathcal A\subset T_2$. The proof of the following lemma is straightforward.

Lemma 4. Let T be a tree. Then $T \in A$ if and only if $\gamma'_s(T) = 2$ and each γ'_s -function of T assigns 1 to at least one pendant edge at the unique vertex of even degree.

Let \mathcal{B}_2 be the collection of trees, T, which satisfy one of the following properties:

Type 1: $T = T_1 \cup T_2 + \{w_1w_2\}$, where $T_1, T_2 \in \mathcal{A}$, u_1, u_2 are the unique vertices of even degree in T_1, T_2 and u_1w_1, u_2w_2 are pendant edges in T_1, T_2 , respectively.

Type 2: $T = T_1 \cup T_2 + \{w_1u_2\}$, where $T_1 \in \mathcal{A}$, $T_2 \in (T_2 \setminus \mathcal{A})$, u_1, u_2 are the unique vertices of even degree in T_1, T_2 , respectively, and u_1w_1 is a pendant edge in T_1 .

Type 3: $T = T_1 \cup T_2 + \{u_1u_2\}$, where $T_i \in (\mathcal{T}_2 \setminus \mathcal{A})$ and u_i is the unique vertex of even degree in T_i , i = 1, 2.

We leave for the reader to check that $\gamma_s'(T) = 3$ for every $T \in \mathcal{B}_2$. The following lemma shows that, under a certain condition, the inverse is also true.

Lemma 5. Let T be a tree with $\gamma'_s(T) = 3$. If every γ'_s -function of T assigns -1 to a non-pendant edge of T, then $T \in \mathcal{B}_2$.

Proof. Let T be a tree with $\gamma_s'(T)=3$ and let f be a γ_s' -function of T. Then f(e)=-1 for a non-pendant edge e=uv, by assumption. Let T_1 and T_2 be the connected components of T-e with $u\in T_1$. We have $f(E(T_1))+f(E(T_2))=4$. Obviously, f restricted to T_i is an SEDF of T_i for i=1,2. If $f(E(T_1))=1$ (the case $f(E(T_2))=1$ is similar) then f restricted to T_1 is a γ_s' -function of T_1 by Theorem 1. Let e' be any edge of T_1 at u. Then, by Theorem 1, we have f[e']=1 in T_1 . So f[e']=0 in T, which is a contradiction. Therefore, $f(E(T_1))=f(E(T_2))=2$, and hence, $\gamma_s'(T_i)\leq 2$ for i=1,2. Now if $\gamma_s'(T_i)=1$ for i=1 or 2 then, since f(e)=-1, there exists a $\gamma_s'(T)$ -function such that it assigns 1 to every non-pendant edge of T, which is a contradiction. Therefore, the function f, restricted to T_i , is a γ_s' -function of T_i for i=1,2. Hence, $T_i\in T_2$. So by Theorem 1, the number of vertices of even degree in T is 0, 2 or 4. Now we consider three cases.

Case 1. T has four vertices of even degree.

This forces $\deg_{T_1}(u)$ and $\deg_{T_2}(v)$ to be odd. Let $\deg_{T_1}(u) \geq 3$ (the case $\deg_{T_2}(v) \geq 3$ is similar). Then there exists a pendant edge, say e', at u by Theorem 1. Now we have f[e'] = f(u) = 1 in T_1 , by Corollary 2. This implies f[e'] = 0 in T, which is a contradiction. Therefore $\deg_{T_1}(u) = \deg_{T_2}(v) = 1$. Let $uu_1 \in E(T_1)$ and $vv_1 \in E(T_2)$. Since $f[uv] \geq 1$ in T we must have $f(uu_1) = f(vv_1) = 1$. Obviously, $\deg(u_1)$, $\deg(v_1) > 1$. We claim that $\deg(u_1)$ and $\deg(v_1)$ are even. Let $\deg(u_1) \geq 3$ be odd. Then there is a pendant edge, say e', at u_1 by Theorem 1. Now we have

 $f[e'] = f(u_1) = 1$ in T_1 , which implies $f[uu_1] = f(u_1) = 1$ in T_1 , by Corollary 2. Hence, $f[uu_1] = 0$ in T, which is a contradiction. So $\deg(u_1)$ is even. Similarly, $\deg(v_1)$ is also even. In order to show that $T_1, T_2 \in \mathcal{A}$ it is sufficient to prove that $\ell(u_1) \geq \deg(u_1)/2$ in T_1 and $\ell(u_2) \geq \deg(u_2)/2$ in T_2 . By Theorem 1 and Corollary 2 we have $2 = f(u_1) = \deg(u_1) - 2\ell^-(u_1)$ in T_1 , where $\ell^-(u_1)$ is the number of pendant edges e' at u_1 for which f(e') = -1. So $\ell^-(u_1) = (\deg(u_1) - 2)/2$ in T_1 . Now since $f(uu_1) = 1$ it follows that $\ell(u_1) \geq ((\deg(u_1) - 2)/2) + 1 = \deg(u_1)/2$ in T_1 . Similarly $\ell(u_2) \geq \deg(u_2)/2$ in T_2 . Hence, $T \in \mathcal{B}_2$ (Type 1).

Case 2. T has exactly two vertices of even degree.

Without loss of generality we may assume $\deg(u)$ is even and $\deg(v)$ is odd. An arguments similar to that described above shows that $\deg_{T_1}(u) = 1$ and $T_1 \in \mathcal{A}$. As in Case 1 one can also see that if $uu_1 \in T_1$ then $\deg_{T_1}(u_1)$ is even and $f(uu_1) = 1$. Let $T_2 \in \mathcal{A}$. Then $\ell(v) \geq \deg(v)/2$ in T_2 . This forces that f assigns 1 to a pendant edge at v, say e', in T_2 , by Lemma 4. Now define $g: E(T) \longrightarrow \{-1, +1\}$ by

$$g(e') = -1$$
, $g(uv) = 1$ and $g(e) = f(e)$ if $e \neq e'$, uv .

Obviously g is a γ'_s -function of T. In addition, g assigns 1 to every non-pendant edges of T, which is a contradiction by assumption. So $T_2 \notin \mathcal{A}$. Hence, $T \in \mathcal{B}_2$ (Type 2).

Case 3. T has no vertex of even degree.

Then obviously $\deg_{T_1}(u)$ and $\deg_{T_2}(v)$ are even. An argument similar to that presented in Case 2 shows that $T_1, T_2 \notin \mathcal{A}$. Hence, $T \in \mathcal{B}_2$ (Type 3).

Now we are ready to state the main theorem of this section.

Theorem 6. Let T be a tree. Then $\gamma'_s(T) = 3$ if and only if $T \in \mathcal{B}_1 \cup \mathcal{B}_2$.

Acknowledgements. The authors would like to thank the referee whose suggestions were most helpful in writing the final version of this paper.

REFERENCES

- [1] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [2] B. Xu, On signed edge domination numbers of graphs, Discrete Mathematics 239 (2001), 179-189.
- [3] B. Zelinca and Liberec, On signed edge domination numbers of trees, Mathematica Bohemica 127 (2002), 49-55.