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ABSTRACT. The closed neighborhood Ng(e] of an edge e in a graph
G is the set consisting of e and of all edges having a common end-
vertex with e. Let f be a function on E(G), the edge set of G, into
the set {—1,1}. If 2 zeN(e) f(=) 2 1 for each e € E(G), then f is
called a signed edge dominating function of G. The minimum of the
values 3 o gy f (e), taken over all signed edge dominating function
f of G, is called the signed edge domination number of G and is de-
noted by «,(G). It has been conjectured that 4,(T) > 1 for every
tree T. In this paper we prove that this conjecture is true and then
classify all trees T with v4(T") = 1,2 and 3.

Keyword: Tree, Signed edge domination function; Signed edge
domination number

1. INTRODUCTION
Let G be a graph with the vertex set V(G) and the edge set E(G).
We use [1] for terminology and notation which are not defined here. Two
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edges e1, e of G are called adjacent if they are distinct and have a common
end-vertex. The open neighborhood N¢g(e) of an edge e € E(G) is the set
of all edges adjacent to e. Its closed neighborhood is Ng[e] = Ng(e) U {e}.
For a function f : E(G) — {-1,1} and a subset S of E(G) we define
f(5) = Y .es fle). If S = Ngle] for some e € E, then we denote f(S) by
fle]. For each vertex v € V(G) we also define f(v) = 3. (,) f(€), where
I(v) is the set of all edges at vertex v. A function f : F(G) — {-1,1} is
called a signed edge dominating function (SEDF) of G, if fle] > 1 for each
edge e € E(G). The minimum of the values f(E£(G)), taken over all signed
edge dominating functions f of G, is called signed edge domination number
of G. The signed edge domination number was introduced by B. Xu in [2]
and denoted by v.(G). The signed edge dominating function f of G with
F(E(G)) = ~L(G) is called 7, (G)-function.

In 2002, it was conjectured [3] that for all trees T', v,(T") > 1. In Section
2, we first prove that this conjecture is true. Then we characterize all trees
T for which v/(T) = 1,2. In Section 3, we characterize all trees T with
v4(T) = 3. All connected graphs G with v,(G) = |E(G)| were characterized
in [2].

Here are some well-known results on v.(G).

Theorem A. (See [3]) Let G be a graph with m edges. Then v.(G) =
m (mod 2).

Theorem B. (See [3]) Let u,v,w be three vertices of a tree T such that u
is a pendant vertex of T' and v is adjacent to exactly two vertices u,w. Let
f be an SEDF of T . Then

fuv) = f(vw) =1.

Theorem C. (See (3]) Let T be a star with m edges. If m is odd, then
7(T) = 1. If m is even, then v,(T) = 2.

Theorem D. (See [2]) Let G be a connected graph. Then v.(G) = |E(G)|
if and only if either G & P, for somen (1 < n <5) or G is the subdivision
of some star K1n (n > 3).

2. A PROOF OF THE CONJECTURE

In 2002, Bohdan Zelinka and Liberec [3] showed that for some special
classes of trees T, 74(T) = 1, and they conjectured that 4.(T) = 1 for
every tree T. In this section we prove that this conjecture is true. We also
characterize all trees T for which +.(T") = 1,2. Throughout this paper ¢(v)
denotes the number of pendant edges at vertex v. For i = 1,2, define T;
to be the collection of all trees of order n > 2 with exactly 7 — 1 vertices of
even degree and £(v) > |(deg(v) — 1)/2] for every vertex v.
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Theorem 1. For any treeT = (V,E), 7,(T) > 1 and, fori=1,2, v\(T) =
iifand only if T € T; . Also, T € T, implies fe] = 1, for every +.-function
f and every edge e € E.

Proof. The statements hold for all trees of order n = 2,3,4. Assume T is
an arbitrary tree of order n > 5 and that the statements hold for all trees
with smaller order. Let f be a «!-function for T.

Case 1. There is a non-pendant edge e = uv € E for which f(e) = —1.
Let Ty and T, be the subtrees of T — e with v € T). Then, v,(T) =
F(E(T)) — 1+ f(E(T2)). For i = 1,2, the function f, restricted to T; is
an SEDF for T;, hence, v4(T;) < f(E(T:)). By the induction hypothesis,
7:(T3) > 1 and, thus, v;(T) > 1. Notice that if v,(T) < 2 then 2 <
f(E(TY)) + f(E(T2)) < 3. So we may assume without lose of generality
that f(E(T1)) = 1. That is, f restricted to T} is a «.-function for T;.
Let ¢’ be any edge in 77 incident to vertex u. Again by the induction
hypothesis, T} € 7; and, hence, fle'] = 1 in T;. This implies fle] = 0
in T, a contradiction. Therefore, when «,(T") < 2, all edges e for which
f(e) = —1 are pendant edges.

Case 2. The only edges e for which f(e) = —1 are pendant edges.

Let M = {e€ E | f(e) = —1}. Let Var = {v1,v2,...,vx} be the degree
one end-vertices of the edges in M and let Wy = {w;,ws,...,w,} be the
remaining end-vertices of the edges in M. Since n > 5, we may assume k
is positive and that 1 < r < k. Further, for 1 < ¢ < r, we may assume
w; has k; > 1 neighbors in Vjs. Then, each w; must have at least k; + 1
neighbors in V'\ Vs, where the adjoining edge e has f(e) = 1. Let t be the
number of edges whose end-vertices are both in Wjs. Then the number of
edges e with f(e) = 1 and which are incident to vertices in Wy is at least
(k1 +1) 4+ (k2+1)+...+ (kr +1) =t =k +r—t. Since Wy induces a
forest, t < v — 1. Thus, T has at least £ +r —¢ > k + 1 distinct edges e for
which f(e) = 1. That is, vi(T) > (k+r—-t)—k > 1.

Now, suppose v.(7T") = 1. Then, we must have that r — ¢ = 1. Therefore,
Wit induces a tree and, for any ) -function f, every vertex w; in Wjs must
have exactly k; + 1 incident edges e for which f(e) = 1. Therefore, since
f(E(T)) = 1, every edge €’ in T must have an end-vertex in Wjs. Moreover,
deg(v) =1 for every vertex v € Wys. That is, £(v) > |(deg(v) — 1)/2) and
deg(v) is odd for every vertex v € V. Therefore, T € 7;. Further, the
construction enforces that f[e] = 1, for every edge e in T.

When v/(T') = 2, we must have r—2 <t < r—1. If t = r —2, W)y induces
a forest of two subtrees, say T and T3, and £(v) > |(deg(v) —1)/2] for each
vertex v in Wyy. Let T3 and T be the subtrees induced by the vertices of V'
which are adjacent to a vertex of T} or T5, respectively. Since f(E(T)) =2
and the fact that f(e) = 1 for every edge e € E(T3) U E(T}), it follows that
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F(E(T3)) = f(E(T4)) = 1, hence, E(T) = E(T3) U E(T4). Therefore, two
vertices in Wy, one in T) and one in 75, must have a common degree two
neighbor, say w, in V' \ (Vjy U Wyy). That is, £(v) > |(deg(v) — 1)/2] and
deg(v) is odd for every vertex v € V'\ {w}. Therefore, T € Tp. If t =7 -1,
then W)s induces a tree and exactly one vertex w; in Wys must have k; + 2
incident edges e for which f(e) = 1. Moreover, every vertex w; € Wy,
i # j, must have k; + 1 incident edges e for which f(e) = 1. Again, T € T5.

Conversely, let T € 77. By first part of the proof we have v.(T') > 1. If
n = 2 then obviously v,(T) = 1. Let n > 3. Define f : E — {1, -1} by:
f(e) = —1 for exactly |(deg(v) — 1)/2] pendant edges e at v if deg(v) > 3
and f(e’) = 1 for the remaining edges e’ at v. It is easy to see that
f(E(T)) = 1. Therefore, v,(T) = 1. The case T € 7; is similar. O

The following result is an immediate corollary of the structure of .-
functions of T € 7;, i =1, 2.

Corollary 2. Let T € T;, i = 1,2, and let f be a 4, -function of T. Then
f(v) =1 if deg(v) = 3 and odd, and f(v) = 2 if deg(v) is even.

3. TREES WITH SIGNED EDGE DOMINATION NUMBER 3

In this section we characterize the trees T with 4/(T) = 3. First, we
study trees T with «}(T) = 3 for which there is a v,-function, say f, such
that f(e) =1 for every non-pendant edge e in T'.

Let B, be the collection of trees, T, which satisfy one of the following
properties:

Type 1: T has exactly two vertices of even degree and £(v) > |(deg(v) —
1)/2] for each v € V(T'), or

Type 2: each vertex of T has odd degree and there exists exactly one vertex
v € V(T) such that £(v) = (deg(v) — 3)/2, and £(u) > (deg(u) — 1)/2 for
each u € V(T —v).

If T € B, then 4.(T") > 3 by Theorem 1. Assume T is of Type 1 and
u and w are the vertices of even degree. Let T' be obtained from T by
adding two pendant edges vu’ and ww'. Then «4/(T") = 1, by Theorem
1. Moreover, if f is a +4(T")-function then f(u) = f(w) = 1 in T by
Corollary 2. Since deg(u),deg(w) > 3 in T, there is a pendant edge e at
v and a pendant edge ¢’ at w with f(e) = f(¢’) = —1. So we may assume
f(uw') = f(ww') = —1. Therefore, f(E(T)) = 3 and hence v.(T) = 3.
Similarly, if T is of Type 2 then v.(T") = 3. The following lemma shows
that, under a certain condition, the inverse is also true.

Lemma 3. Let T be a tree of order n > 4 with v,(T) = 3. If T has a
v, -function, say f, such that f(e) = 1 for every non-pendant edge e in T
then T € B,.
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Proof. If n = 4 then the result is trivial. Now let n > 5. Following the
notations in the proof of Theorem 1, Case 2, since v.(T) = 3 we have
r—-3<t<r-1.

Case l. t=r—1.

Then W)y induces a tree. Now either exactly two distinct vertices w; and
w; in Wy must have k; 4+ 2 and k; + 2 incident edges e, respectively, for
which f(e) = 1. So T € B, (Type 1). Or exactly one vertex w; in Wy
must have k; + 3 incident edges e for which f(e) = 1. So T € B; (Type 2).

Case 2. t=7r—2.

Then W)y induces a forest of two subtrees, say T} and T3, and 4(v) 2>
| (deg(v) — 1)/2] for each vertex v in Wjs. Let T3 and Ty be the subtrees
induced by the vertices of V' which are adjacent to a vertex of T} or T5,
respectively. Since f(E(T)) = 3 and the fact that f(e) = 1 for every
edge e € FE(T3) U E(Ty), it follows that 2 < f(E(T3)) + f(E(T3)) < 3. If
f(E(T3)) = f(E(T4)) = 1, then there is precisely one edge ¢’ & E(T3) U
E(T,) with f(¢) = 1 and with end-vertices in T3 and Ty. So T € B,
(Type 1). If f(E(T3)) = 1 and f(E(Ty)) = 2 (the case f(E(T3)) = 2
and f(E(T,)) = 1 is similar) then exactly one vertex in T3, say w;, must
have precisely k; + 2 incident edges e with f(e) = 1 and for each vertex
w; € Wy, i # j, there are precisely k; + 1 incident edges e with f(e) = 1.
Finally, two vertices in W)y, one in T} and one in T5, must have a common
degree two neighbor in V' \ (Viy UWy). So, T € B, (Type 1).

Case 3. t =71 —3.

Then W), induces a forest of three subtrees T3, i = 1,2,3, and £(v) >
|(deg(v) — 1)/2] for each vertex v in Wy, Let Tiy3, 1 =1,2,3, be the tree
induced by the vertices of V' which are adjacent to a vertex of T;. Since
F(E(T)) = 3 we have f(E(Ty)) = f(E(Ts)) = f(E(Ts)) = 1. Now two
cases are possible. Either two vertices in Wy, one in each T; (without loss
of generality we may assume i=1,2) and two vertices in W)y, one in each
T; (i=2,3), must have common degree two neighbors in V' \ (Vy U W)y).
So T € B, (Type 1). Or three vertices in Wy, one in each subtree T},
i=1,2,3, must have a common degree three neighbor in V' \ (Vs U Wyy).
So, T' € B; (Type 2). 0

Now we study trees T with -y, (T") = 3 for which every v.-function of T
assigns —1 to at least a non-pendant edge of T. Let A be the collection
of trees, T, in which v,(T) = 2 and £(v) > |deg(v)/2] for each v € V(T).
Obviously, A C T5. The proof of the following lemma is straightforward.
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Lemma 4. Let T be a tree. ThenT € A if and only if v.(T) = 2 and each
~.-function of T assigns 1 to at least one pendant edge at the unique vertex
of even degree.

Let B, be the collection of trees, T, which satisfy one of the following
properties:
Type 1: T =T, UT, + {wywz}, where T1,T> € A, u;,us are the unique
vertices of even degree in T}, T, and ujw;, ugws are pendant edges in 177,75,
respectively.
Type 2: T = T} UTy + {wyuz}, where T} € A, Tz € (T2\ A), u;,up are the
unique vertices of even degree in T}, T3, respectively, and u;w; is a pendant
edge in Ty.
Type 3: T =T1 UT; + {uyuz}, where T; € (72 \ A) and u; is the unique
vertex of even degree in T}, i = 1, 2.

We leave for the reader to check that (T) = 3 for every T € B,. The
following lemma shows that, under a certain condition, the inverse is also
true.

Lemma 5. Let T be a tree with 4[(T) = 3. If every ~,-function of T
assigns —1 to a non-pendant edge of T, then T € B,.

Proof. Let T be a tree with «,(T) = 3 and let f be a 4.-function of T.
Then f(e) = —1 for a non-pendant edge e = uv, by assumption. Let T}
and T, be the connected components of T — e with u € T;. We have
F(E(T1)) + f(E(T2)) = 4. Obviously, f restricted to T; is an SEDF of T;
for i = 1,2. If f(E(T1)) = 1 (the case f(E(T2)) = 1 is similar) then f
restricted to T} is a «,-function of T} by Theorem 1. Let €’ be any edge
of T at u. Then, by Theorem 1, we have fle'] = 1in T}. So fle'] =0
in T, which is a contradiction. Therefore, f(E(T1)) = f(E(T2)) = 2, and
hence, v}(T;) < 2 for i = 1,2. Now if 4(T;) = 1 for i = 1 or 2 then, since
f(e) = —1, there exists a +/(T)-function such that it assigns 1 to every
non-pendant edge of T, which is a contradiction. Therefore, the function
f, restricted to T;, is a v,-function of T; for ¢ = 1,2. Hence, T; € T5. So by
Theorem 1, the number of vertices of even degree in T is 0, 2 or 4. Now
we consider three cases.

Case 1. T has four vertices of even degree.

This forces degr, (v) and degr, (v) to be odd. Let degp, (u) > 3 (the case
degr,(v) > 3 is similar). Then there exists a pendant edge, say €/, at u
by Theorem 1. Now we have f[e'] = f(u) = 1 in T}, by Corollary 2. This
implies f[e'] = 0 in T, which is a contradiction. Therefore degr, (u) =
degr,(v) = 1. Let uuy € E(T1) and vv; € E(T2). Since fluv] > 1 in
T we must have f(uu;) = f(vvy) = 1. Obviously, deg(u,),deg(v;) > 1.
We claim that deg(u;) and deg(v,) are even. Let deg(u;) > 3 be odd.
Then there is a pendant edge, say €', at u; by Theorem 1. Now we have
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fl¢'] = f(v1) = 1 in T3, which implies fluw;] = f(u;) = 1 in T, by
Corollary 2. Hence, fluui] =0 in T, which is a contradiction. So deg(u,)
is even. Similarly, deg(v,) is also even. In order to show that 71,7 € A it
is sufficient to prove that €(u;) > deg(u1)/2 in Ty and £(ug) > deg(uz2)/2 in
T5>. By Theorem 1 and Corollary 2 we have 2 = f(u;) = deg(ug) — 28~ (1)
in 71, where £~ (u;) is the number of pendant edges ¢’ at u; for which
f(e') = =1. So €~ (u;) = (deg(u1) — 2)/2 in T;. Now since f(uu;) =1
it follows that £(u;) > ((deg(u1) — 2)/2) + 1 = deg(u1)/2 in Ty. Similarly
£(uz) > deg(uz)/2 in Ty. Hence, T € By (Type 1).

Case 2. T has exactly two vertices of even degree.

Without loss of generality we may assume deg(u) is even and deg(v) is odd.
An arguments similar to that described above shows that degr, (v) = 1 and
Ty € A. Asin Case 1 one can also see that if uu; € T} then degr, (u1) is
even and f(uu;) = 1. Let T € A. Then £(v) > deg(v)/2 in T». This forces
that f assigns 1 to a pendant edge at v, say €', in Ty, by Lemma 4. Now
define g : B(T) — {-1,+1} by

g(e') = -1, g(uv) =1 and g(e) = f(e) if e # &', uv.

Obviously g is a <y.-function of T. In addition, g assigns 1 to every non-
pendant edges of T', which is a contradiction by assumption. So T ¢ A.
Hence, T € By (Type 2).

Case 3. T has no vertex of even degree.

Then obviously degr, (u) and degr, (v) are even. An argument similar to
that presented in Case 2 shows that 71,7, ¢ A. Hence, T € By (Type
3). (]

Now we are ready to state the main theorem of this section.
Theorem 6. Let T be a tree. Then 4.(T) =3 if and only if T € B, U B,.
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