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Abstract

In [5], a product summation of ordered partition f(n,m,r) =
Yo cjch -+ -ch, was defined, where for two given positive inte-
gers m,r, the sum is over all positive integers €1,C2," " yCm
withei + e +...+ e =n. f(n,r) = Z f(n,m,r) was also
defined. Many results on f(n,m,r) Were found However, few
things have been known about f(n,). In this paper, we give
more details for f(n,r), including its two recurrences, its ex-
plicit formula via an entry of a matrix and its generating func-
tion. Unexpectedly, we obtain some interesting combinatorial

identities, too.
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1 Introduction

The well-known Fibonacci sequence {Fy,} is defined as Fy = Fy =
1 and F,, = F,—1 + F—2 for n > 2 and it has been studied in many
articles and books (see [1,2,3]). Here we introduce a generalization
of the Fibonacci sequence {F,gk)} which is called the k—generalized

Fibonacci sequence for integer k > 2 [4]. It is defined as
F&) =a1F,(,k) —azF,S_z'*'asFr(.li)s s (=R top FY) nkr for n2>1,

where F( k) 1, and for each negative ¢, F;(k) =0, and ay,as, -, ax
are arbitrary real numbers. Setting k = 2, a; = 1 and a2 = -1, we
obtain the Fibonacci sequence.

The generating function for {F,gk)} is

1
FE@#) =Y FR¢ = :
®) :4;0 1—ajt+ agt? — -+ - + (—1)kaytk
Suppose that aj,as,---,ar are defined as above. Consider the

general order-k linear homogeneous recurrence relation
gn = G1gn-1 — 02gn—2 +a3Gn-3 — - + (1) larga_k, for n>k,

and it begins with arbitrary initial values go, g1, -, gk—-1.
Theorem A([4]) The generating function for {gn} is

n __ s—O (Ez—-o( 1) azgs—z) t?
Glt) = 3 gnt" = Tt

n>0

and {gn} satisfies that

k 3
gn = Z (Z(_l)iaigs—-i) F'r(t.,i)sa

8=0 \i=0

where ag = 1.
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In (1], Louis Comtet gives an exercise to show that

C1Co- - Cp = ("2",;'_“_'11) Generally, we consider

c1tcg+-tep=n
f(n,m,r) = Y. ddedn,
c1+ezttem=n
where all integers ¢; > 0, and m,r are two given positive integers.
For a given integer r, define f(n,r) = i f(n,m,r). Many results
on f(n,m,r) were found, such as its g;ltrating function, the ex-
plicit formulas for f(n,m,2) , f(n,m,3) and f(n,m,4) and so on
[5]. We also prove that f(n,1) = Fon,—;. However, few results have
been known about f(n,r) for r > 2. In this paper, we concentrate
on f(n,r) and obtain more results about it, including its two recur-
rences, its explicit formula via an entry of a matrix and its generat-
ing function. Additionally, we gain some unexpected and interesting

combinatorial identities.

2 One recurrence and the explicit formula for
f(n,r)

For an integer n > 0, it has 2"~! ordered partitions [3]. Take n = 4
for example. All its ordered partitions are 4, 143, 3+1, 2+2, 1+1+2,
14+2+1, 2+1+1 and 1+1+1+41. From the definition of f(n,r), one
can write f(n,r) = Y ala}---af, where the sum is over all 27!
ordered partitions a; + ag + - - - + @ = n. According to the value of
a1, one can easily get the recurrence of f(n,r) as follows.

fr,r)=f(n—-1,7)+2"f(n—2,7) +3"f(n—3,7) + - --
+n -1 f(1,r)+n" for n>1. (1)

465



Since f(n,1) = F5,_1, we have a recurrence of Fibonacci number as
Fop 1= Fop 3+ 2F, 5+3F 7+ -+ (n=1)Fi+n for n>1.

Let C,, be an n x n matrix which is defined as

(1 27 3 . m-2F (-1 o)

1000 -« 0 o 0
01 00 -« 0 0 0
Cn = (2)
000 0 - 1 0 0
\ 00 0 0 - 0 1 0 )

It follows that the recurrence relation (1) can be rewritten as

( f(n,r) \ ( f(n—l,r) \
f(n—1,7) f(n—=2,7)
f("’.'2,7”) _c, f(n-'3,7‘) o nsl.
f(2,7) f@,r)
\ @) ) \ r )
By iteration one obtains
[t ) [ 1)
f(n - 1) ’I‘) 0
f(nfz’r) —cr , for n>1. 3)
f(2,r) 0

\ @) \ 0
From (3), it follows that f(n —j+1,7) = [CRlj1 for 1 < j < n
and [C7];1 denotes the (j, 1)-entry of matrix C};. Then the following
result holds.
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Theorem 2.1 Forn > 1, we have f(n,r) = [C?]1; where the matriz

C,, is defined as (2).

Applying this theorem and using some mathematical software,
one is able to compute f(n,r) more easily and faster, such as f(1,7) =
L f(2,r)=1+2", f(3,r) =1+2-2"+ 3", f(4,r) =1+3-2" +
2-3+2.4, f5,r) =14+4-2"43-3"+5-4"+5" +2.6",
f(6,r)=1+5.2"44-3"+9-4"+2-5"+7-6"+3-8" +9" and so on.

3 Another recurrence and the generating func-
tion for f(n,r)

Before presenting the other recurrence for f(n,r), we must prove
some lemmas. Firstly, some terminologies are needed.

Suppose that M and N are two sets. Use MM to denote the
set which contains all the maps from N to M. Then it follows that
IMY| = m™ if [M| = m and |N| = n. It is known that the number

of one-to-one maps of N with |N| = n is n!.

Lemma 3.1 Let r be a positive integer and k be any nonnegative

integer. Then

r

> (;) (=1 (r+k~3) =1l (4)

i=0
Proof. Noting that the right hand of Eq.(4) enumerates the one-to-
one maps of an r —entries set, say R, i.e., |R| = r. On the left hand,
we construct some maps and then we can obtain the one-to-one maps
of R.
Suppose that K is a set with [K| = k. Let M; = (RUK) — R;,
where R; is a subset of R with |R;| = j and integer 0 < j < 7.
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Given j, there are (7) ways to choose R; and |M JR| =(r+k—j)
for each R;. By the Principle of Inclusion-Exclusion, it follows that
i (;)(=1¥ (r+k— )" calculate the number of the one-to-one maps
j=0

of R, i.e., Eq(4) holds. [ |
Take R = {a,b} and K = {c,d} for instance. |M{}| = 4%, |Mf| =
3% and [M§| = 22. Then 42 — (3) - 3% + 22 = 2!. If we take R = {a, b}
and K* = {c,d,e, f,g}, we have 72 — (3) - 62 + 52 = 2!,
Applying identity (4), we can obtain several interesting identities.

Corollary 1 Let r be a positive integer and k be any nonnegative

integer. Then

r—1r-—-1

ZZ( )( er+k-—7) 1 r+k—-j-1)= (5)

i=0 j=0

Proof. Since (}) = (';1) + ’J":i) for j > 1, we have

i O(=1)(r +k—35)
= (r+k)'+ z:(("‘l)+( M(=1Y(r + k= )" + (-1)k"

i T (7166 + k- a>'+2(’-)( DH#r+ k=g~ 1)

- ,_ 5 ()17l + k= 3) = (r+ k=G~ 1)

= 5 O S k= g - 1
j= i=
By applying Eq.(4), we obtain (5). [ |

Corollary 2 Let v be a positive integer and k be any nonnegative

integer. Then
r+1

3 (A (G e ) ©

§=0
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Proof. Note that Eq.(4) holds for any integer k£ > 0. It follows that

> (§)<—1)J'(r+k—j)f = (7
=0
and .
> (T)(—l)j(r+k+1—j)”=r! (8)
=0 \J

Eq.(7) subtracted from Eq.(8) gives that
T d
> (T)(—l)j(r +hk+1-5)"=)" (7,.)(—-1)7.(7' +k—3)"=0 (9)
=0 \J =0 \J
The left hand of (9) becomes

(k1Y + 35 ()1 +h+ 1) = & ()-1P(+k=3)

= (r+k+l)’+;§ (j.il)(—l)"+1(r+k—j)’"—j§0 (1Y (r+h=g)
=(r+k+1) + ;gl(jil) + (N + k= 5)7+ (1) 1k
=(r+k+1)"+ rg G (=0T r + k= 5)" + (=)™ k"

r41 .

=% ()10 +k+1-4) 5
]."—‘:

Using the method of proving (6) and from (5), we deduce the

following result.

Corollary 3 Let r be a positive integer and k be any nonnegative
integer. Then

r—-1 =
3 (;) (-1 (r+k+1-3) k) =0, (10)
i=0 j=0

Now we turn to f(n,r). From Eq.(1), if n is sufficiently large, we

have
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fn=1,7)=f(n—2,7)+ 2" f(n-3,r) + 3 f(n — 4,7)+
e+ (=2 f(1,r)+ (n—2). (11)

(11) subtracted from (1) yields that
fn,r)=f(n-1,r)= f(n-1,7)+(2"-1)f(n—2,7)+ (3" -2") f(n—
3,7)+ -+ [(n=-1)"—(n-2))f(1,r)+n" — (n— 1) that is

n—2

fln,r) = 2f(n—1,r)+Z[(i+1)'—i"]f(n—i——l,'r)+n'—(n—1)".
= (12)

Thus we have

fln—1,r) = 2f(n—2,r)+'§[(z'+1)f — i f(n—i—2r) + (= 1)

—(n—2)". (13)

(13) subtracted from (12) gives that
fn,)=3f(n—-1,7)+(2"-1-2)f(n—-2)+n"—2(n—1)"+(n—2)"

+:§[(i +2)" =206+ 1) +i|f(n—i-2,7). (14)

For the convenience of the discussion, we call the operation from
Eq.(1) to Eq.(12) an 1 — subtract operation (1-S.0 for short). Then
the operation from Eq.(12) to Eq.(14) is called the 2-5.0 and so on,
i.e., if the subtraction operation is operated for ! times from Eq.(1),
we get the [—-S.0, where integer | > 0. After [-S.0, we define that
fmr) = 85— 1,r) + b f(n = 2,7) + b f(n — 8,r)+ -+ +
b,(,l)_l f@,r) + D, for integer I > 0. For example, b§°’ =i fori =
1,2,---,nand b? = 2,62 = 2r —1-2,6®) = ir —2(i— 1)+ (:—2)"
for i = 3,4,---,n. It should be noted that {\") = b, — b, for
1<i<n-1.
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Proposition After [-S.0, b{") = z ()(=1YG — ), for i > 1+ 1.
Proof. The result is proved by the 1nduct10n of l. If l =0, it is easy
to see that b() = 1" for ¢ > 1. Suppose that b(l) Z ( ) (=1)(-35)",
for ¢ > I + 1. From the definition of [—S.0, we have

I+1 l l
B =~

= ,~§o P E+1-5) - jéo D176 -5y

=@E+1)y +,-é1 OPE+1-5)+ :g: Y (=1y7+2G — 5y
+(=1)HE - )T

=(@E+1)"+ ;Zgl[(jil) + (I(=1Y*1( = G) + (1)1 G — 1y

= % (619,

for i > I 4+ 1, which implies that

I+1
-8 ()
j=0
fori>({+1)+1. i
Now we give another recurrence for f(n,r).
Theorem 3.2
fln,r) = b§’”+1) Fn—1,7) + b5V f(n—2,7) + 5§V f(n — 3,7)+
,(.’_;_"il)f(n—r— 1,7), for n>2r+2,
where b7 = 7 42, 7Y = or — ("+?) and b = o — 5(®, -
bV — b, for2<i<r+l.

Proof. From Proposition and Lemma 3.1, we know that b,(-")
io ()(=1Y(G — )" = 7!, for i > r + 1. Thus 605D = b)) — 4"

]—
rl -7 =0, for i > r + 1, implying that
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b,f.':il)f(n -r—1,r).
On the other hand, it is clear that b; = b(r“) = 7+ 2 and
b = B = ) ) = (oY — 7Y — b, = b — b, —

by
B, — .- — b, for i > 2. And particularly, by = bg”'l) =2"—1-
2— . —(r+1)=2"—("}?). n
This theorem gives an easy way to enumerate f(n,r) if r is
smaller enough, such as f(n,1) = 3f(n—1,1)—- f(n—-2,1), f(n,2) =
4f(n—1,2)-2f(n-2,2)+ f(n—3,2), f(n,3) =5f(n—1,3)—-2f(n—
2,3)+5f(n—3,3)— f(n—4,3), f(n,4) =6f(n—1,4)+ f(n—2,4)+
21f(n—3,4) — 4f(n —4,4) + f(n — 5,4), and so on.

This theorem means that the recurrence of f(n,r) is a general

order-(r + 1) linear homogeneous recurrence relation, which reminds
us that we can obtain its generating function via the generating
function of some (r + 1)-generalized Fibonacci sequence.

Define the (r + 1)-generalized Fibonacci sequence {F 1} as

R =BT ECD LB IRCD 4 DR,

which satisfies the same recursive pattern as {f(n,7)}. From Theo-

rem A, we have the relation between {f(n,r)} and FY g

r+1 s—1
fr) =3 (bé’“’f(s, r) =3 b f(s — )) FiD,

s=1 i=1

where we define 5§ = 1 and note that f(0,r) = 0. Base on

Theorem A, the following result holds.

Theorem 3.3 The generating function of {f(n,r)} is
¥.(t) = X f(n,7)t"
n>0
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o (B f(sr) - Tz oV (s —4,m)) 2

t t+t2
1—3t+2 Ta(t) = 1—4t+22 -3

7- It is equivalent to mean that if one

For example, ¥, (t) = and

2 3
Vs(t) = 1= 5tt-|J-r::2 j;t3+t
sets ) = 3F), — F?, F® = 4F®, —9F®, + F®),; and F =
5F,$4_)1 - 2F,£4_)2 + 5F,S‘i)3 — F,£4_)4, respectively, it follows that f(n,1) =
FP,, i(n,2) = F®, + F®), and f(n,3) = FY, + 4FY, + FY,,

n-1»

respectively.

References
[1) L. Comtet, Advanced Combinatorics, Reidel, Dordrechet, 1974.

[2] Richard A. Brualdi, Introductory Combinatorics, 3th Ed., Pren-
tice Hall, 1999.

[3] Richard P. Stanley, sl Enumerative Combinatorics, Vol. 1, Cam-
bridge, England, 1997.

[4] S. Yang, On the k—generalized Fibonacci numbers and high-
order linear recurrenc relations, Appl. Math. Comput.(2007),
doi:10.1016/j.amc.2007.07.016.

[5] F. Huang and B. Liu, On the Product Summation of Ordered
Partition, ARS Combinatoria (accepted)

473



