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Abstract

Let G be a graph on n vertices vy, vz, -+, v, and let d(v;)
be the degree of the vertex v;. If (d(v1), d(v2), - - -, d(vy))* is an
eigenvector of the (0,1)-adjacency matrix of G, then G is said
to be harmonic. Semi-regular harmonic graph is the harmonic
graph which has exactly two different degrees. Equi-bipartite
harmonic graph is the bipartite graph H = (X,Y; E) with
|X| = |Y]|. In this paper, we characterize the semi-regular
harmonic graph and equi-bipartite harmonic graph, and the
degree sequence of equi-bipartite 3-harmonic graphs.
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1 Introduction

Let G = (V(G), E(G)) be a graph, |V(G)| = n,|E(G)| = m,
whose vertices are vy,vs, - -,,. The number of first neighbors of
the vertex v; is the degree of this vertex and is denoted by d(v;).
A vertex of degree k will be referred to as a k-vertex. In addi-
tion, vertex of degree zero is called isolated vertex. The maximum
and minimum degree of G is denoted by A and 4, respectively.
D(G) = {d(v)|v € V(G)} is referred to as the degree set of G.
The column-vector (d(v1), d(v2), - - -,d(vs))! is denoted by d(G). The
(0,1)-adjacency matrix A(G) of the graph G is the square matrix of
order n whose (i, j)-entry is equal to unity if (v;,v;) € E(G) and is
zero if (v;,v;) ¢ E(G). The eigenvalues and eigenvectors of A(G)
are said to be the eigenvalues and eigenvectors of the graph G, re-
spectively. The number of k-vertices is denoted by n,. Evidently,

Z ng=mn (1)
k>0

The graph G is said to be harmonic if there exists a constant A,
such that the equation

Mw)= Y dv) (2)
(vi,v;)€E(G)
holdsfor alli=1,2,:--,n.

It is easy to see that Equation (2) for ¢ = 1,2, - -, n are equivalent

to
A(G)d(G) = Md(G) (3)

i.e., the graph G is harmonic if and only if d(G) is one of its eigen-
vectors. A graph satisfying Equation (2) or (3) will be referred to as
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a A -harmonic graph. Clearly, A is the eigenvalue corresponding to
the eigenvector d(G).

The harmonic graph G with |D(G)| = 2 is said to be semi-
regular harmonic graph. Equi-bipartite harmonic graph is the bi-
partite graph H = (X,Y; E) with |X| = |Y].

Lemma 1.1 ([2]) (a) Let the graph G’ be obtained from the graph
G by adding to it an arbitrary number of isolated vertices. Then G’
is harmonic if and only if G is harmonic.

(b) If G is a graph without isolated vertices, then G is A-harmonic
if and only if all its components are A-harmonic.

(c) Every regular graph is A\-harmonic, with A equal to the degree
of the graph.

Lemma 1.2 ([2]) Let G be a connected A-harmonic graph.
(a) X is the greatest eigenvalue of G and its multiplicity is one.
(b) If m > 0 then A > 1.
(¢) =1 if and only if G = Kj.

Let X be a positive integer. Construct the tree T) in the following
manner. Ty has a total of A3 — A2+ \+1 vertices, of which one vertex
is a A% — X + l-vertex, A2 — X + 1 vertices are A-vertices and (A —
1)(A%? — X +1) vertices are 1-vertices, i.e., each A-vertex is connected

to (A\-1) 1-vertices and to the A% — X + 1-vertex.

Theorem 1.3 ([2]) The tree T, is the unique connected non-regular

2-harmonic graph.

In view of Lemma 1.1, it is reasonable to restrict our consider-

ations to connected graphs. And bearing in mind Lemma 1.2 and
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Theorem 1.3, in what follows we may assume that A > 3. In this
paper, we characterize the semi-regular harmonic graph and equi-
bipartite harmonic graph, and the degree sequence of equi-bipartite
3-harmonic graph with |D(G)| < 3.

2 Semi-regular harmonic graph
The following lemmas are needed.
Lemma 2.1 For a A-harmonic graph G, § < A < A.
Proof. By Lemma 1.2 and reference (3],
min{ry,r2, ++,Tn} < A < max{ry,re,- -, 1},

where r; is the sum of the entries of the i-th row of A(G). And it is
easy to see that r; = d(v;),1 < ¢ < n. Thus § = min{ry,rz, -, 1} <
X < maz{ry,re,- -, Tn} = A. [ |

Lemma 2.2 For a A-harmonic graph G, G is regular if and only if
d= A

Proof. It clearly just needs to prove the sufficiency.

If 6§ = ), then there exist a vertex v € V(G) such that d(v) =
d = A. Let v1,v9,-+,vx be the neighbors of v. By the definition
of harmonic graph, A2 = Ad(v) = d(v1) + d(v2) + - -+ + d(v)), and
d(v;) > A\, 1 < i < A Thus it is easy to see that d(v;) = A (1 <
i < )A). For any u € V(G), there exists a path t1t3---¢; in G with
v = t;,u = t;. By the above discussion, 3 is a A-vertex. Similarly,

ta,-- -, ts = u are \-vertices. Thus, G is a A-regular graph. |
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Lemma 2.3 If z is a vertez of a A-harmonic graph G, then d(z) <
A2 — X5 +34.

Proof. Let y;,i = 1,2,---,d(x), be the vertices adjacent to z and
let ;5,5 = 1,2,---,d(y) — 1 be the vertices adjacent to y; other than
z. Then by Equation (2),

d(y:)-1
My) = d()+ Y dzy) 2 d(z) +6(d(w:) - 1),

j=1
from which d(y;) > [d(z) — 8]/(X — d). On the other hand,

d(z)

Md(z) =) d(y;) 2 d(z)(d(z) - 6)/(A - 6),

i=1

from which d(z) < 32 — A\ + 6. |

Remark 1 By the prove of Lemma 2.8, we know that A < \2—)\6+
d, and the equation holds if and only if d(y;) = [A — 6)/(\ — 6) and
d(Z;]) = 6) i= 112""3A:j = 1121"'1d(yi) -1.

Lemma 2.4 For all dy,dz, ) € Z+,dy < do, if di,da, \ satisfy:

(i) 1<di <A<dy,

(ii) di(d2 = ) | (d3—an)>

(iii) da(A = d1) | (@p—a,) and

(iv) di(A—=1)/(d1 —1) < d2 < di(A+1-dy),

then there exists a A-harmonic graph G, such that D(G) = {d1,dz}.

Proof. Clearly,

_ di(dz — AN)di + di(A —d1)dy

A &4,

= a1d; + aadp
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da(X\ — d1)d2 + da(d2 — N)d:

Ao = B ds = b1d; + bads
where,
_ dy(ds — ) 4 = di(A —dy)
do—dy v 02 do —dy
by = da(ds — N) _ de(A — dy)
1= Td—dy ds — dy

By (ii) and (iii), we know a1,b2 € Z. And a3 =d; —a3,b = dz — by,
therefore, az,b; € Z.
It's easy to get 1 < b1, b2 < d2 — 1 and by (iv), we know 1 < @3,a3 <
dy - 1.
Let g = lem[az, 1] = a2g2,t = biga — 1, construct bipartite graph
G = (W1, Va; E) as follow:
Vi = {0, %1, -+, Tts U0, U1, " "+, Ug—1}
Va = {40, Y1, Yes V0, V1, *, Vg—1}
E = {(zi,y:)i = 0,1,---, ;5 =0,1,---,01 — L;7r = i + j(mod t +
1);0 <r <t} U{(usv)li = 0,1,---,9 - 135 =0,1,---,ba — Lir =
i+ j(mod ¢);0 < v < g—1}U{(Zp,v)lg = 0,1,---,9 — 1 =
r(mod g2);0 <7 < g2 — Lip=bir,-- -, ba(r +1) = 1} U{(yp, ug)lg =
0,1,---,9-1;g=r(mod g2);0 <7 < ga—1L;p=byr,-- -, by (r+1) -1}
In this case, for all z;,¥;,u;,v;(0 < ¢ < ¢,0 < j < g-—1)
d(z;) = d(y:) = d1,d(u;) = d(vj) = d2, and z; has a), a2 neighbors
in Y and V, respectively, y; has a;, a2 neighbors in X and U, respec-
tively, u; has by, by neighbors in Y and V, respectively, v; has by, be
neighbors in X and U, respectively, where X = {zo, 21, --,2:},U =
{uo,u1,- - ug1}h Y = {yo, 41, we}h, V = {vo,v1,-++,vg-1}-
follows that for all z € V(G), Md(z) = Y (5,)ced(y). ThusGisa
J-harmonic graph, and D(G) = {d;,da}. [ |
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In fact, the A-harmonic graph G with D(G) = {d1,d.} is not
necessary a bipartite graph. The construction of non-bipartite graph
is not difficult, too.

Lemma 2.5 G is a \-harmonic graph with D(G) = {d1,d2}, d1,d2,\ €
Z*,dy < dy,, then dy,ds, X satisfy above (i) to (iv).

Proof. By Equation (2), 1-vertices must be adjacent to A-vertices,
but clearly, di < A < dg. Therefore (i) holds. And there exists
vertices u and v such that d(v) = di,d(u) = do. Suppose vertex
v has z dj-vertices as its neighbors, and other (d; — z) neighbors
are dp-vertices. Suppose vertex u has y ds-vertices as its neighbors,
and other (d2 — y) neighbors are dj-vertices. By the definition of
A-harmonic graph,

My =zdy+(d1 —x)dy , Mz =yds+ (dz —y)dy

from which
7= di(da — A) y= da(A — dy)
d-d '’ d2—dy
Because the number of neighbors are integers, (ii) and (iii) holds.
Moreover G is connected and z, y are constants, then 1 < z = dj(d2—
A)/(da — dy) < dy — 1 from which (iv) holds. |

Combining Lemmas 2.4 and 2.5, we get:

Theorem 2.6 For all dy,ds,\ € Z*,dy < dy, if dy,do, A satisfy
(i) to (iv) then there exists A-harmonic graph G, such that D(G) =
{d1,d2}. On the other hand, if G is a A-harmonic graph with D(G) =
{d1,d2}, di1,do, A\ € ZF,d; < da,, then dy,ds, A satisfy (i) to (iv).
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3 Equi-bipartite harmonic graph

Let G = (X,Y; E) be a bipartite graph with |X| = |Y| = n,|E| =
m. The number of k-vertices in X and Y are denoted by nj%
and ngy, respectively. The degree sequence of X is the row-vector
(d(v1),d(v2), - - - ,d(vs)) such that X = {v1,vs,--,vn} and d(v;) <
d(vy) < --- < d(vy), denoted by d(X). The definition of degree

sequence of Y is similar.

Lemma 3.1 G = (X,Y; E) is a equi-bipartite harmonic graph, then
following equations hold:

4

Yk0Mk =1 (4)
2k>0M2k =T (5)
{ Tksoknik = Yo knak  (6)
Pkso(Ake — E)ny =0 (7)
\ Zkzo()\k —k)no =0 (8)
Proof. By |X| = |Y| =n, (4) and (5) obviously hold. And

m=Yde)=; L M@ =3 X ¥ du.

zeX zeX z€X (zy)eR

Note that d(y) appears exactly d(y) times, therefore

m=Y da) =3 3 @) )
zeX yeY
Similarly,
m= Y d) =3 Y @) (10)
yeY zeX
And

Yod@) =Y knu ., Y dz) =) k’n,

zeX k>0 zeX k>0
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Z d(y) = Z kng Z dz(y) = Z kz’ngk.

yeY k>0 yeY k>0
Thus by Equations (9) and (10),

A Z knge = A Z kng = Z kznlk = Z k2n2k1

k>0 k>0 k>0 k>0

from which Equations (6), (7) and (8) are obtained. |

Lemma 3.2 Let G = (X,Y; E) be a equi-bipartite harmonic graph
with |D(G)| = 2, then d(X) =d(Y) and X\ ¢ D(G), therefore § > 2.

Proof. Let D(G) = {j,k}.
If G has A-vertices, we may assume j = A. Then by Equations
(7) and (8),

(Mo = E)nge + (A= A)npy =0, (t=1,2)

from which ny = 0,t = 1,2, contrary to the fact |[D(G)| = 2. By
Equation (2), 1-vertices must be adjacent to A-vertices, therefore
é>2.

We may assume j < A < k, combining Equations (4) and (7), (5)
and (8), we get

i(A—7)n
S e eyt )
o kA—-k)n
MR-k -0 -7
Obviously, nyjx = ngk,n1j; = ng;j. Thus, the degree sequences of X

t=1,2 12)

and Y are the same.

[
In fact, by the prove of Lemma 3.2, if G is simple graph with
|D(G)| = 2, then G has no A-vertices, therefore § > 2.
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Lemma 3.3 Let G = (X,Y; E) be a equi-bipartite harmonic graph
with |D(G)| = {i,j,k} and $+{+ 4 £ 5+ 1+ 1, then d(X) = d(Y).

Proof. We may assume ¢ < j < k. Combining Equations (4) and
(7), (5) and (8), we get

_ zn — (T — y)ne;
T—2z ’

Tk (13)

ng= 2oy (14)
zZ-=

where z = i(A— 1),y = j(A—3), z = k(A — k). Substituting Equation
(6) for (13) and (14), we get n1; = naj, therefore ny; = ng;, n1x = nag.
Thus, d(X) = d(Y). ]

Theorem 3.4 For a equi-bipartite 3-harmonic graph G = (X,Y; E)

with |D(G)| < 3, one of the following must hold:

@) If |D(G)| = 1, then G is a 3-regular graph with d(X) = d(Y) =

3,3,:--,3),n13=n23 >3

(i) If |D(G)| = 2, then d(X) = d(Y) = (2,---,2,4,---,4) where

nme=np=Lny=nyu=%n2>6

(iii) If |D(G)| = 3, then
1°d(X)=d(Y)=(2,---,2,3,---,3,4,---,4) wherenyy =t,np =

2,nz=n—-3ti=1,2%te Zt,n>5
2°d(X)=dY)=(1,---,1,3,---,8,5,--+,5) wheren;s = t,n; =

S5t,nig=n—6ti=1,2t€ Zt,n>11

Proof. By Lemmas 2.2, 3.2, and 2.4, (i) and (ii) obviously hold.
The smallest graphs with |D(G)| = 1 and |D(G)| = 2 are shown in
Fig. 3(1), (2) and (3), respectively.
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We now suppose |D(G)| =3 :
Case 1: If § = 2, then A < 5.

Case 1.1: If D(G) = {2,3,4}, then nyy = t,n;y = 2t,n3 =
n—-3ti=1,2;t € Zt by Lemma 3.1. By

3x2=24+4=3+3 , 3x3=34+3+3=2+3+4,

3x4=3+34+34+3=2+2+4+4=2+3+3+4,

there must exists 3-vertex adjacent to 2-vertex, otherwise G is not
connected. Therefore no3 = n13 > 2,n > 5. The smallest graph is
shown in Fig. 3(4).

Case 1.2: If D(G) = {2,3,5}, then n;5 = t,n;; = 5t,niz =
n—=6t,i=1,2;t € Z* by Lemma 3.1. By

3x2=3+3 , 3x3=3+3+3=2+42+5 , 3x5=23+3+3+3+3,

each 5-vertices of X adjacent to five 3-vertices of Y, and these 3-
vertices are adjacent to 2-vertices of X. These 2-vertices are adja-
cent to 3-vertices of Y, by the partition these 3-vertices are adjacent

to 5-vertices of X (see Figure 1).

5 2 5
X X ‘X [ ] [ ] L]
3 3
Y Y
Figure 1

Thus any 5-vertices of X and Y are not in the same component

of G, a contradiction.
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Case 1.3: If D(G) = {2,4,5}, then § = 2,A = 5. By Remark 1,
G must have 3-vertices. Contradiction.

Case 2: If § = 1, then A < 6,3 € D(G).

Case 2.1: If D(G) = {1,3,4}, then nyy = t,ny = 2t,n;3 =
n—3ti=1,2;t € Z* by Lemma 3.1. By

3x3=3+3+3=1+4+4 , 3x4=3+3+3+3

each 4-vertices of X adjacent to four 3-vertices of Y, and these 3-

vertices are adjacent to 1-vertex and other 4-vertex of X (see Figure

1).

Figure 2

Thus any 4-vertices of X and Y are not in the same component
of G, a contradiction.

Case 2.2: If D(G) = {1,3,5}, then n;s = t,ny = 5t,nz =
n—6t,i = 1,2;t € Z* by Lemma 3.1. And n;; < n;3 because a
3-vertex is at most adjacent to one 1-vertex. Thus n > 11 > 11.
The smallest graph is shown in Fig. 3(5).

Case 2.3: G with D(G) = {1, 3,6} does not exist, because 3x3 =
6 + z1 + z; has no solution in D(G).
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