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bstract

In this paper, by using the generating functions of Fibonacci polynomial sequences
nd their partial derivatives, we work out some identities involving the Fibonacci
olynomials. As their primary applications, we obtain several identities involving the
ibonacci numbers and Lucas numbers.
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. Introduction

Define the generalized Fibonacci polynomial sequence { F,,(z, y)} by the
:cond-order linear recurrence relation

Fﬂ+2(xa y) =an+1($,y) +yFn(z’y)v (l)
r > 0 with Fo(z,y) =0, Fi(z,y) =1. Let
T+ 22 +4y z— 22+ 4y
— 3 b=y —
enote the roots of the characteristic polynomials of the sequence {F,(z,y)}.
1 this case, the terms of the sequence {Fn(:z, y)} can be expressed as

gl - £

Q=

Fo(z,y) =

rr n > 0. Considering the generating function of {F,,(z,¥)}: W(t,z,y) =
reoFa(z, y)t™ and G(t, z,y) = —“L(%M, we can deduce from (1) that

=
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— t
Wt z,y) = Z Fo(z,y)t" = I

n~0 -zt — yt2'
1
G(t,z,y) Z Fogi(z, y)t" = W (2)
n=0
Since by (2),
— 1 5= Z(-’L""yt)mtm Z Z ( ) B pm—nmtn
-y m=0 m=0n=0
co 2m
—_ 2m—n, n—m;n
=X 3 ()
m=0n=m
o 18l
— Z E ( )xn—Zmymtn_ (3)
n=0m=0 m
By (2) and (3), we can get
B
Foui(zy) =) ( m )m"‘z"‘y"‘. (4)
m=0

As we know, if y = 1, the sequence {Fn(z,1)} is called the Fibonacci
polynomial sequence; when z = 1, {F,(1,y)} can be considered as another
form of the Fibonacci polynomial [1, 3]; butifz =1, y =1, F,(1,1) is
known as the Fibonacci number; when z = 1 and y = 1 with Fy(z,y) =
2, Fi(z,y) = 1, Fa(1,1) becomes the Lucas number. For convenience, we
denote them by Fn(z), fa(y), Fn, Ln, respectively.

These sequences play a very important role in the studies of the theory
and application of mathematics. Hence, the various properties of them
were investigated by many authors. For example, Y. Yuan and W. Zhang
[4]) obtained a calculating formula involving the Fibonacci polynomials

D> Faalz) Fopr1(z)=) k—1 meIm(5)

ay+-+ap=n

l-"—]('n,+k 1- m)(n+k 1-2m

where the summation is over all weak compositions a1 +ag+:--+ax =mn,
k >0, n >0, and [3] denotes the greatest integer not exceeding 3. Later,
W. Zhang [6] proved a general summations

. Frlrc‘-i-l m
Z Ftar 1) Fm(arsr +1) = (=5)™" ok Ll U,("_“_)k(?Lm), (6)

a1+ +ap41=n
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where k, m > 0, n > 0, i is the square root of ~1 and U¥(z) denotes the
kth derivative of the Chebyshev polynomial of the second kind U, (z) with
respect to zx.

In this paper, by using the generating functions of Fibonacci polyno-
mial sequences and their partial derivatives, we work out some identities,
which can be considered as the generalized forms of (5). As their primary
applications, we obtain several identities involving the Fibonacci numbers

and Lucas numbers.

2. Summation formulas for generalized Fibonacci polynomials

In this section, we extend the identity (5) to another more general form.

Theorem 1. Let {F,(z,y)} be defined by (1). Then, for any positive
integers k and n, we can obtain the following calculating formula

3 HF01+]($ y)—ﬂn%;l*m)(ﬂ-’-i—_ll_ Qm)z"'z"‘y"‘, (7)

a1t tap=ni=1 m=0
where a, > 0, for 7 = 1,2, -, k,and [§] denotes the greatest integer not
exceeding 3.
(13 +12)
Proof : Let %f—'ﬂ denotes the !;th partial derivative of G(¢, z, y)

for z, and the l3th for y; F,(.l"") (z,y) denotes the I th partial derivative
of F,(z,y) for z, and the lath for y. Then by induction from (2), we can
easily deduce that

8GH+1 (¢, z,y) (20 + 1)1 +3 FlL n
Ty = et B Z (z,y)t

n=0

1+1,0 1+1,0 j
= ZF’(P:;‘_’_)?(I, y)tn+2l+1=zl-v](+-§‘+) T, y)ti 31 (8)

8G%(t, z,y) (2013 > i
Oz'dy T (=gt - y2)2t nz—o FRii(zy)t
Lt 1, .
ZF’("*")"“ (= )" = Z (+ls)l+1($, y)t+3.(9)
n=l
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Then we can find that

oo k oo
Zt" Z HFaH-l(x’y) = (E F’n+l(z)y)tn)k

n=0 @)1+--+arp=ni=l n=0
1

=asaeE=l (0

When k = 2L + 2(1 > 0), we get from (8)

1 *IG(t,z,y) +1.0)
= @D oat gy (21 )P Z Favaiz(=,0)e". (1)

Extracting the coefficients of ¢” on both sides of (10) and (11), we obtain
the identity

Z HFO.H-l(fo (21+1)|Fy(;$;l-:.)2( $y) (]2)

a1+ tap=nl=1

From (4), we can deduce that F, (_‘,_Jg,l _:)2(z, y) is

[ni:!lil]
FlLD) g+l ( Z (n'*' 3l+1- m>zn+31+1—2m m)

Flale(zy) = Tyt . m y
m=!

nt21
_ [_z;:_] (n+3l+1-m!!  nyoom, m-t
(m — D)l(n + 21 — 2m)! Y

= {Z’:l‘ (n+2l+l _m)lxn 2m, m

ml(n — 2m) Y

ll
=§:( n+k—1-m )xn—-2my‘m (13)

mi(n — 2m)!

Combining (12) and (13), we can have the identity (7) .

The proof when k = 2l+1 (I > 0) is similar to that when k = 21+2 (I >
0), and therefore is omitted here.

Letting y=1 in Theorem 1, we may immediately deduce that

Corollary 1.[4] For any positive integers k& and n, we have

> H Fonn (x)_§ (n k- )(n + kk—_ll— 2m)mn_2m.

a1 +-tap=ni=1 m=0
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Setting £ = 1 in Theorem 1, we can get

Corollary 2. For any positive integers k and n, we obtain

Z H faen (y)_z (n +k- - ) (n + kk—_ll- 2m)ym'

a1 +tar=nli=1 m=0

Let ¥ — 0 in Corollary 2, then « — 1, 8 — 0, f, (y) — 1. By these,
we can immediately obtain the well-known result

Corollary 3. ) 1= (’H"e n.

a1+62+ +oe=n

Corollary 4. For any positive integers k,n and j, we have

(2]
n+k—1—-m\n+k—-1-2m\ __
Z HF(2J+l)ar—F2_7+IZ( )( k-1 ) gj-}-z{n' (14)

a1+ +ar=n+ki=1
where a, >0, for r =0,1,--- , k.
Proof : Taking x = La;41 in F, (z), and noting that

u:\/g),,_ L, £V5F,
2 B 2

L2 - 5F2 =4(-1)" and (

we have

ar a
P (L ) 1 L2j+]+\/]4%j+1+4 L2j+1 _\/L§j+l+4
a\L2j+1)= -
NZIY 2 2

ar r
__ 1 Loji1+V5Fj4 a Laji1 — VB5Faj41 *
V5F41 2 2

(2j+Nar 2i+1a,
__ 1 1+5 (1= V5 _F2jt1ya,
V5Fsj41 2 2 Fajen

Then (14) follows by replacing z by Lgj41 in Corollary 1.
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Second Proof : Substituting y = rgt in fa,(y), we can have

4+, T+ 2\ A= ST =)
1 ( 25+1) _(\ 2;i+1)
2

Sa(
4 L2 2
\/1+,., -

Qr 2
1 Loj 1 +V5F25.1 _ Lojr1—V/5F541 *
VAL 21+1F 2j+1 2 2

_ F(2)+l)a.,.
= rar—1 *
Lait Faj41

Then taking y = -53’—“- in Corollary 2 yields (14).
7

Corollary 5. For any positive integer j, when n + k = 0(mod 2), then

k (3 1 a1
Z HF'&J)“‘ E(\/_sz )7l—2m(n+kn: m)(n+:_ll2m) (15)

a1+ +ar=ntki=1 m—0
where n,k >0, a, > 0 and a, = 0(mod 2), for r=1,2,...,k.
Proof : When a, = 0(mod 2), for r = 1,2,...,k, setting z = \/gng in

Corollary 1 or y = (T/'ﬁ)—’ in Corollary 2, similar to the proof of Corollary
]
4, we can derive the result.

3. Weighted summation formulas involving Fibonacci polynomi-
als

In this section, we can derive several weighted summation formulas
involving the Fibonacci polynomials.

Theorem 2: For any positive integers k£ and n, we can have the formula

k
> [Ie+)Foni(=)

ay+-top=nl=1

n=2m
_mm{%k—l}{z n—2m+2k—1k—N\mn—-2m—)\(n—2m+2k-2—3 22
S g onkmei \m J 2k -1 ’

where a. >0, forr=1,2,--- , k.
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Proof : When y = 1, setting F({,z) = Y ooo(n + 1) Fry1(z)t", we can
deduce from (2) that

1+1¢2

F(t,z) = )] o

(16)

Let 8‘—5&9 denotes the ith partial derivative for z and F{? (z) denotes the
ith derivative for z. Then by induction from (16}, we can obtain that

FF(z,t) _ net _ (L 2)(0+ DI
i - z;)(n+ L+ DES (@) = m an

Then noting that (1 + t2)¥~1 = Y51 (¥-1)¢2™, we can obtain from (16)
and (17) that

0 k
Ztn Z H(al'l‘ I)Fac-f-l(z)

n=0 ai1+'+ar=nl=]
(14 2)* (1421 & (2k-2)
(1 =zt — t2)%* = (2k - 1)! Z(n+2k—1)Fn+2,c_,(x)t“

n=0

1 [><] '”i“{['g']rb_l} _1 2k—2
IS (” - )(n—2m+2k—1)#.2;3k_1(z)t". (18)

Qk - l)' n=0 m=0

Comparing the coefficients of t* on both sides of (18) can yield

k
> Je+ 1) Fani(@)

a1 t-tar=nl=1
min{|2],k-1}

1 ~1 _
T k-1 (km )m_2m+2k_1)1:‘n(35m3-)2k—1(x)° (19)
) m=0
When y = 1, we can obtain from (3) that

n—2m + 2k -1 F(gk-z) (.’.E)

(2k - 1)! n—2m+2k—1
(2= N o
_ Z n 2m+2k:—ln 21’n 7\n—2m+2k-2 Ja:"_z"‘—2j.(20)
‘ n—2m—j i 2k—1
j=0

Combining (19) and (20), we can arrive at the result.

Similarly, considering the generating function H(t,z) = Z;’:’:o.(n +
2)Fr+1(z)t™, we can have the following
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Theorem 3: For any positive integers k and n, we get
minfk,n} | 252 (25

k
Y, Jle+2fun@= Y > > (- ly“nnJJ?z?-lz-% 1

a1+ t+ar=ni=1 J=0 i=0 m=0
2e_j(lsf)(n—j—21’-—m)(n.—j—2i+2k—2—m)z,‘__z,.“zm,
7 m 2k -1
where a. >0, forr =1,2,--- , k.
Proof : From (2), we may have

t2

2y —

(r;) Frop1(z)t™t?) = 6!, i——g)'

Hence
2—-xt
H(t,:c) = (—Ith-_t?)? (21)
Recalling that
k(K .
(2 —zt)* = z;) (J) (—zt)I 2%~ and z;( —2)7,
J= i=

we can derive from (17) and (21) that

[ k
Z t" Z H(ax + 2) Fo 41(x)

n=0 a1+--+ar=nl=1

2 — zt)* 2 — gt)k ad
(l(—ztizz)”c (1+(t2 (;k) I 2 (7 26 = DEG ()

oo min{k,n}{ 23]
- 2k—2 n
= Bho 1),20 EO > (- 1)‘“(7)132'c U —j — 2+ 2k~ D 5y ()L
mr Rl Sl

By taking the similar steps from (19) to (20), we can deduce the result.

Letting z = Lyj4 in Theorem 2 and in Theorem 3, respectively, and

recalling Fy (L2j41) = Jl’-%%lﬁﬁ we can get the following
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Corollary 6. For any positive integers k,n and 7, we have

min{ 2] k—1}| 252m)

k n—2m+2k—1
Z HalF(g,-H)a, = F2kj+l Z Z n—2m-—j

a1 +-+ap=n+ki=1 m=0 h=0
2m A\n—2m+2k-2-h [r—2me+h)
min{kn}[*5 2) [“—h—”l
n— h—2z+2k 1
Z H (al+l)p(2]+l)a; = F2J-|-1 Z Z E (— )H-h nt+h—2i—
a1t +apntkl=1 h=0 i=0 m=0

ok—h kK\(n—h—-2i—-m\(n—h—2:14+2k—-2—m [ 264m)
h m 2k -1 AR
where a, >0, for r=0,1,--- k.

In the same way, taking z = v/5 5F%; in Theorem 2 and in Theorem 3,

respectively, and recalling F,_(v5[%;) = ij’-“—, when a, = 0(mod 2),
we can get the following

Corollary 7. For any positive integer 7, when n+ k = 0(mod 2), we have

Lk min{[g].k—l}["’g"‘

i —2m+2k-1
L A S

ay+--+ar=n+kl=1 m=0 h=0

—2m—h\fn— 2m+2k 2-h An=2(m-+h)
Y ey TR

|n—h lln—h—?i]

k k min{k,n}
Ly n—h—2i+2k—1
Y. Te+%epa=75 > > Z P
art-tar=n-tkl=1 (VB = = a0 n—h-2i-m
kK\m-h—-2i—m\(n—-h—-2i42k-2—m )
~h _yn—2(i+m)
09 GRS (e (L

where n,k >0, a, >0 and a, = 0(mod 2), forr=1,2,...,k
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