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Abstract. The Wiener index of a connected graph is defined as
the sum of all distances between unordered pairs of vertices. We
determine the unicyclic graphs of given order, cycle length and
number of pendent vertices with minimum Wiener index.
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1 Introduction

The topological indices are numbers associated with chemical structures via
their hydrogen—depleted graphs, which have been often used in modeling
of structure—property relationships.

The Wiener index (often also called the Wiener number) is one of the
oldest topological indices [13, 9], and it has been studied extensively [3, 4,
7, 8]. For recent results on Wiener index, see, e.g., [1, 5, 12, 14].

Let G be a connected graph with vertex set V(G). For u,v € V(G),
let dg(u,v) be the distance between vertices © and v in G. Evidently,
dg(u,u) = 0. The Wiener index of G is defined as

W(G)=% Y de(u,v).
u,veV(G)

Burns and Entringer [2] and Moon [11] determined the trees of given or-
der and number of pendent vertices (vertices of degree one) with minimum
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Wiener index. Gutman et al. [10] gave a relation related to the Wiener
indices of unicyclic graphs (connected graph with a unique cycle) and some
of its subgraphs, which seems to be the first result on the Wiener index
of unicyclic graphs. Recently, we determined in [6] the unicyclic graphs of
given order, cycle length and diameter with minimum Wiener index.

In this note, we determine the unicyclic graphs of given order, cycle
length and number of pendent vertices with minimum Wiener index.

2 Preliminaries

For a graph G with v € V(G), let dg(u) be the degree of u in G. Let
P, be a path on s vertices. For a vertex v of the graph G, G — v denotes
the graph resulting from G by deleting v (and edges incident with it).
For a edge subset E; of the graph G (the complement of G, respectively),
G- E; (G+ E,, respectively) denotes the graph resulting from G by deleting
(adding, respectively) the edges in Ej.

Let n, m and p be integers with m > 3, p > 2 and m+p < n. For integer
awith0<a<n—m-—p,let k(a) = "":‘“ and s = n—m — a — pk(a),

and let U, m p(a) be the unicyclic graph obtained from the cycle Cy, =
VgV . .. Um_1Vg by attaching the path P, at an end vertex to vg, and then
attaching to the other end vertex of the path the end vertices of p— s paths
with k(a) vertices, and s paths with k(a) -+ 1 vertices (if @ = 0, then these
p paths are attached to vp).

Lemma 2.1. Let n, m and p be integers withm > 3, p > 2 and m+p < n.
Let v = y(n,m,p) = ma.x{'_”—_—?-J +2- m,O}. Then W (Upn,m p(a)) with

p+l1
0<a<n-—m-—pisminimum if and only ifa =y ory—1if v > 1 end
Z_%} is not an integer, and a = 7y otherwise.

Proof. For 1 < a < n—m—p, suppose that u is the vertex outside the cycle
such that dg(u, vo) = a, where G = Un m p(a). Let uy, uz,us, ..., u4g) be
the neighbors of u, where u; lies on the path between vy and u (u; = v
if @ = 1), uz is an end vertex of one path with k(a) vertices attached
to u. It is easily seen that Upmp(a ~ 1) = G ~ {uua,..., utggw)} +
{ulug, ces ,uludc(u)}, and thus

W (Un,mp(a = 1)) = W (Un,m,p(a))
= (n—-m—a-—k(a))[k(a) — (m +a-2).

Obviously, n — m — a — k(a) > k(a) > 0, thus W (Upmp(a—1)) >
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W (Un,m,p(a)) if and only if k(a) > m +a -2, and W (Up mp(a—1)) =
W (Un,m,p(a)) if and only if k(a) = m +a — 2.

Suppose that k(1) > m — 1. Then there is a maximum integer a > 1
with k(a) > m + a — 2 such that W(Uy i p(e)) is minimum. Such an a is
denoted by aq.

Suppose that k(a) > m+a - 2. Let &/ = I_-g_{—%J +2—m. Let t =

n—2—(p+1) ’.:T_fj’ where 0 <t < p. For any integer a” with o’ < a” <

n —m — p, it is easily seen that k{a”) — (m+a" —2) = [‘;—’J ~1 <0, and
then k(a") < m + a” — 2 where i = o” — o’. Note that k(a’) > m +a’ — 2.

Thus, ag = o’ = I_-’;—fj +2-m.

If ;—;fll- is not an integer, then 0 < ¢t < p—1, k{ag) = m+a¢—2, and thus
W (Un,m,p(@0)) = W(Unmplao — 1)) for ap > 1. If ;T—ll is an integer, then
t = p, k(ao) > m + ap — 2 and thus W(Up,m p(a0)) < W(Un,m,p(ao — 1))
for ag > 1.

Ifk(l) <m+1-2=m-1, then W(Up 1 p(0)) < W(Upnmp(l)) <
o+ < W(Up,mp(n —m — p)). Now the result follows easily. a

3 Result

For integers n, m and p with m > 3, p > 0 and m+p < n, let U(n, m,p) be
the set of unicyclic graphs with n vertices, cycle length m and p pendent
vertices. The cases p = 0,1 are trivial. We assume that p > 2. We will
determine graphs in U(n, m,p) with minimum Wiener index.

Let G be a unicyclic graph with n vertices and let C,, = vov; ... Vm—1v0
be its unique cycle. Then G — E(C,,) consists of m trees Tp, T3, ..., Tm—1,
where v; € V(T;) fori =0,1,...,m—1. If dg(v;) > 3, then the components
of T; — v; are called the branches of G at v;, each containing a neighbor of
v; in T;. Let v;,. .. s Vidg (vg)-2 be the neighbors of v; in T;.

Lemma 3.1. Let G be a unicyclic graph and C,, = vov1 ... Vm-1v0 be iis
unique cycle. Suppose that dg(v;),de(v;) > 3, where 0 < i,j <m—1 and
i# 4. Let G =G~ {'vjvjl 13 Vi V5ag vg)~2 + Vv, ..., Uivjdc(uj)-z}
and G" = G = Wiy, .-, Viligg ooz [ T (Vi%ir-+ - ViViagquy—a [+ 1RER

W(G) > min{W(G"), W(G")}.

Proof. Let n; be the number of vertices of T; — v; for i =0,1,...,m — 1.
Note that for v € V(T;) and v € V(Tj) with ¢ # j, de(u,v) = de(v, ) +

99



de(vi,vj) + dg(v,v;). It is easily seen that

W(G’) - W(G) =nj z ng [dg(vk,vi) - dg(vk,vj)] .
0gkgm—1
k#j

IfW(G') > W(G), then Y ng[dg(vk,v;) — de(vk, )] <0, and thus
ogkSm—1
=4

W(G") - W(G)
= n Y mulde(ve,v;) — do(vk, vi)]

0<k<m~-1
Kt

= n Z nilde(vk, v;) — de(vk, v)] — ni(ni + nj)de(vi, vj)

0<k<m—1
Ketj
< —ni(ni +n;)da(vi, v5) < 0.
The result follows. a

Let G be a connected graph of the form in Fig. 1, where @1, Q2, M; and
M, are vertex—disjoint graphs, [V(Qu)l, IV(@2)l, IV(My)], V(M) 2 1,
and u and v are connected by a path of length ¢ > 1, u (resp. v) is adjacent
to at least one vertex in M; and @ (resp. M> and Q3).

@ @
G

R () (- —~R0R
G1 G2
Fig. 1. The graphs G, G; and G»
Lemma 3.2. Let G, G1 and Gy be the three graphs in Fig. 1. Then
W(G) > min{W(G1), W(G2)}.

Proof. 1t is easily seen that

W(G1) - W(G) =i V(@) - [[V(Mz)| — (IV(M)| + [V (QU)])]-
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If W(Gy) > W(G), then [V(My)| < [V(M2)] - |V(Q1)|, and thus

W(G2) -W(G) = i-|[V(Q)I-[IV(M)] - (IV(Mz)] + |V(Q2)])]
< V(@) [(IV(M2)] - V(@)

=(IV(M)] + V(Q2)])]

—i- [V(@)IIV(@1)] + [V(Q2)]) < 0.

The result follows. ' |

For a unicyclic graph G whose unique cycle is Cr,, let Vi(G) = {z €
V(Cn) : dg(z) > 3} and Vo(G) = {z € V(G)\ V(Cpr) : do(z) > 3}.

Lemma 3.3. Let G be a graph with minimum Wiener index in U(n, m, p),
wherem > 3,p>2 and m+p <n. Then |Vo(G)| =0 or 1.

Proof. Let Cy, = vov1 ... vm-17p be the unique cycle of G. By Lemma 3.1,
we have |V}(G)| = 1, say V31(G) = {vo}.

Suppose that a branch B’ of G at vy contains two vertices, say = and y,
in V2(G). Choose = and y such that dg(z,y) is as small as possible and let
P be the unique path in G joining « to y. If dg(z,y) > 1, then vertices on
P except z and y all have degree two. Let z; (resp. y1) be any neighbor of
z (resp. y) outside P. Using Lemma 3.2 by setting u = z, v = y, M, (resp.
M) to be the component of G — z (resp. G — y) containing z; (resp. y1),
@, (resp. @2) to be the graph consisting of all the components of G — z
(resp. G—y) not containing z; and y (resp. y; and z), then we get a graph
G’ € U(n,m,p), such that W(G’) < W(G), a contradiction. Thus, for any
branch B of G at v, |[V2(G) NV(B)| =0or 1. If |V2(G)NV(B)| =0 for
any branch B, then |Vo(G)| =0.

Now suppose that for some branch B of G at vy, [Va2(G)NV(By)| =1,
say Va(G) NV(B1) = {uo)}.

Suppose that dg(vp) > 3. Let Q be the unique path in G joining uo
to vp. Let u; be any neighbor of up outside Q. Applying Lemma 3.2 by
setting u = ug, v = vy, M; to be the component of G — uy containing u;,
M; to be C,, — vo, @1 to be all the components of G — ug not containing
u3 and vg, @2 to be all branches of G at vy not containing ug, we may
get a graph G” € U(n,m,p), such that W(G") < W(G), a contradiction.
Thus, dg(ve) = 3, i.e., By is the unique branch of G at v, then |V2(G)| =
Va(G) N V(By)| = 1. O

Now we prove the main result.
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Theorem 3.1. Let n, m and p be integers withn > 6, m >3, p > 2 and

n—2

m+p < n. Lety = y(n,m,p) = max { I.P'“J +2- m,O}. Then Upn m p(7)
and Upmp(y — 1) if v 2 1 and 253 is not an integer, and Unmp(7)
otherwise are the unique graphs in U(n,m, p) with minimum Wiener indez.

Proof. Suppose that G is a graph with minimum Wiener index in U(n, m, p).
Let Cn = vou1...Um-1% be its unique cycle. By Lemma 3.3, we have
Vi(G)| = 1, say Vi(G) = {0}, and |V2(G)| =0 or 1.

Let v/ = vp if |Vo(G)| = 0 and let v’ be the only vertex in V,(G) if
|Va(G)| = 1. It is easily seen that all the components consisting of vertices
outside the cycle of G — v/ are paths. Suppose that there are two such
paths (attached to v’ in G), say P, and P, such that ¢ > s + 2 and
s > 1. Let u (resp. v) be the pendent vertex of G in P, (resp. P;). For
G = (G —v) + {w} eU(n,m,p),

WG -W(G) = —(t-1)n—-t—-1)+s(n—s-2)
= (t-s—1)(E+s+1-n) <0,

and thus W(G') < W(G), a contradiction. We have G = Uy, m 5(0) if
[Va(G)| = 0, and G = Uy m p(a) with some a > 1 if |[V2(G)| = 1. Now by
Lemma, 2.1, the result follows. O

Example. If n = 6, then the possible cases in Theorem 3.1 are (m,p) =
(3,2), (m,p) = (3,3) and (m,p) = (4,2), for which Us 3,2(0), Us,3,3(0) and
Us,4,2(0) are the unique extremal graphs with Wiener indices 27, 24 and
26, respectively. If n = 8, m = 3 and p = 2, then Ug32(1) and Us 32(0)
are the unique extremal graphs with Wiener index 66.
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