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Abstract

We investigate the existence of 3-designs and uniform large sets of 3-
designs with block size 6 admitting PSL(2,2") as an automorphism

group.
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1 Introduction

Let t,k,v, and X be integers such that 0 < ¢ <k <vand A > 0. Let X be
a v-set and Py (X)) denote the set of all k-subsets of X. A t-(v,k, \) design
is a pair D = (X, D) in which D is a collection of elements of P(X) (called
blocks) such that every t-subset of X appears in exactly A blocks. If D has
no repeated blocks, then it is called simple. Here we are concerned only
with simple designs. It is well known that a set of necessary conditions for
the existence of a t-(v, k, A) design is

v—1 k—1
A .} =0 (mod . ) 1
t—1 t—i)/)’ (1)
lpart of the results of this paper is recently obtained by Li and Shen,
using a different method ([101).
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for 0 < i < t. An automorphism of D is a permutation ¢ on X such that
o(B) € D for each B € D. An automorphism group of D is a group whose
elements are automorphisms of D. A large set of t-(v, k, A) designs, denoted
by LS[N](t, k, v}, is a set of N disjoint ¢-(v, k, A) designs (X, D;) such that
D; partition P(X) and N = (}=})/A. A large set is said to be G-uniform
if each of its designs admits G as an automorphism group.

Let G be a finite group acting on X. For = € X, the orbit of z is
G(z) = {gz| g € G} and the stabilizer of z is G; = {g € G| gz = z}.
It is well known that |G| = |G(z)||Gz|. If there is an £ € X such that
G(z) = X, then G is called transitive. The action of G on X induces a
natural action on P, (X). If this latter action is transitive, then G is called
k-homogeneous.

Let ¢ be a prime power and let X = GF(g) U {oco}. Then the set of all
mappings g : = — 228, on X such that a,b,c,d € GF(q), ad —bc is a
nonzero and g(oo) = a/¢, g(—d/c) = oo if ¢ # 0, and g(o0) = oo if ¢ = 0,
is a group under composition of mappings called projective general linear
group and is denoted by PGL(2,q). The set of all elements of PGL(2, q)
for which ad — be is a square is a group called projective special linear group
and is denoted by PSL(2,q). Note that for ¢ = 2" every element of GF(q)
is a square and so PSL(2, ¢) is isomorphic to the PGL(2, g). Thus PSL(2, g)
is sharply 3-transitive on X and |PSL(2,q)| = (¢* — g). The structure of
the elements of PSL(2, ) is well known (see for example [4, 5]) and is given
in Table 1, for ¢ = 2" where ¢ denotes Euler’s function. In this Table the

third column show the number of conjugacy classes.

Table 1
The structure of the elements of PSL(2,¢), ¢ =2"



order order of centralizer no. of classes type

1 ¢ -q 1 19+1

2 q 1 1123
dlg—1 g-1 £{d) 1247
dlg+1 g+1 £(d) d¥

The group PSL(2, ¢) has been used for constructing ¢-designs by differ-
ent authors, see for example [1, 2, 3, 4, 6,7, 9, 11]. In 3, 11), for ¢ = 3
(mod 4) all 3-designs and uniform large sets of 3-designs with block sizes
4,5 and 6 admitting PSL(2, ¢) as an automorphism group were completely
determined. In [2], for ¢ = 3 (mod 4) all parameters for which there ex-
ist 3-designs with block size not congruent to 0 and 1 modulo p (g = p)
with automorphism group PSL(2,q) were determined. In [8], for ¢ = 2"
all 3-designs with block sizes 4, 5 admitting PSL(2, q) as an automorphism
group were completely determined. In this paper, we investigate the ex-
istence of 3-designs and uniform large sets of 3-designs with block size 6
from PSL(2,2"). Recently all 3-designs with block size 6 from PSL(2,2")
were determined by Li and Shen, using a different method, ([10]). Since
PSL(2,q) is 3-transitive, a 3-(g + 1,k, ) design admits PSL(2,q) as an
automorphism group if and only if its block set is the union of orbits of
PSL(2,9) on Pi(X). We determine the number of orbits for all possible
orbit sizes from the action of PSL(2, ¢q) on Ps(X) and then use the results
to construct 3-(g + 1,6, A) designs and large sets of these designs.

Throughout this paper, we let ¢ = 2" be a power of 2, X = GF(g)U{oo}
and G = PSL(2, q) acting on X. We also denote G(0,1,00} by H. It is easy
to see that

z-1 1 1 T
, T y T =, 2 1l —x, T }.

H= s
{me e l—-2z x z—1



2 Orbit Counting

In this section, we consider the action of G on Ps(X) and determine the
possible sizes of orbits and the number of orbits for any fixed size. For
a 6-subset B of X, let Ap = {{z,9,2}] {0,1,00,2,y,2} € G(B)}. The
cardinality of Ap (denoted by Ag) is called the indez of G(B) which is
clearly well defined. Note that Ag > 0. We denote the number of orbits of
index 7 by N;.

Lemma 2.1 Let B € Ps(X). Then Ag|Gg| =120 and
i) if n = 0 (mod 4), then Ap = 20, 24, 40, 60,120,
ii) if n # 0 (mod 4), then Ap = 20,40, 60, 120,

Proof Since G(B)isa3-(g+1,6, Ag) design, we have |G(B)| = Mg (31)/ ().
Therefore, by |G| = |Gs||G(B)|, we find Ag|Gp| = 120. By (1), 4|Ap(g—1)
and so 4|]Ag. Moreover, 5|Apg(q — 1) and therefore if n # 0 (mod 4),
then 5|Ag. It follows that Ag = 20,40,60,120, if » # 0 (mod 4) and
g = 4,8,12, 20,24, 40,60, 120, otherwise. We now show that Ap # 4,8, 12

or equivalently |Gg| # 30,15, 10.

First suppose that |Gg| = 10. Let K be a normal subgroup of Gp of
order 5 and g € Gp be an element of order 2. Then there are k;, k2 € K
such that gk; = kag. Note that k; and k fix exactly one element z of B.
Since g(z) = k2(g(z)), we have g(z) = z which is a contradiction with the
fact that g has no fixed point.

Now let |Gg| = 15. As there is a unique group of order 15 which is
cyclic, Gp has an element of order 15. But such an element cannot fix B
and therefore |Gg| # 15.

Finally, let [Gg| = 30. Let P; and P, be 3-Sylow and 5-Sylow sub-
groups of Gp, respectively. Then at least one of the P; or P is normal in
Gg. Therefore, P, P, is a subgroup of order 15 of Gp which is impossible
as described above. a

Lemma 2.2 Let H act on P3(GF(q)\ {0,1}). Then all nonregular orbits
are of size 2 and the number of these orbits are (¢ — i)/6, where i =4 for
even n and i = 2 otherwise.



Proof Since each element of order 2 in H cannot fix any element of
P3(GF(q) \ {0,1}), all nonregular orbits are of size 2. Let i = 4 for even n
and ¢ = 2 otherwise. Let s; and s; be the number of orbits of sizes 2 and
6, respectively. It is easy to see that 2s; + 6s; = (‘7;2). The total number
of orbits can be found by the Cauchy-Frobenius lemma. We have

1 -2
sits =gy T Fix(o) =§(("3 )+L),
g

where L is the number of 3-subsets of GF(q)\ {0,1} fixed by z — (z—1)/z
or z — 1/(z —1). Therefore, s; = L/4 and s, = (2(%;%) — L)/12. By
Table 1, we can see that L = 2(gq —£)/3. 0

Lemma 2.3 Ifn =0 (mod 4), then Nog = 1.

Proof The number of B € Ps(X) such that |Gg| = 5 is (g° — q)Nay/5.
On the other hand, by Table 1, each element of order 5 of G fixes exactly
2(q — 1)/5 elements of Pg(X) and there are exactly 2g(g + 1) elements of
order 5 in G. Therefore, (g+1)g(g—1)/5 distinct 6-subsets are fixed by the
elements of order 5 of G. We now have (¢° — q)Nay/5 = (¢ — 1)g(g + 1)/5
and hence Ngy = 1. O

Lemma 2.4 We have Nog + Neo = (g — 2)(g — 4)/24 and

@8 4f n=0,2 (mod 4),

Nog + 2Ny =
@2 4p=13 (mod 4).

5
Proof Let S = {(g,B)|g(B) = B,o(g) = 2}. By double counting and
q/2
using Table 1, we have |S| = 3|G| %2 + |G|&e = ﬂ'iz. So Nag + Ngo =
(¢ -2)(g—4)/24 . Now let S = {(g, B)|g(B) = B, o(g) = 3}. By double
counting and using Table 1 we have

(g—1)/38
G177 it n=0,2 (mod 4),

q-1

(@+1)/3
16(*% ") if n=1,3 (mod 4).

q+1

151 = 216172 + 216120 —



So
-(-9;—41 if n=0,2 (mod 4),
Nog + 2Ny =

@8 if n=1,3 (mod 4).

a

Theorem 2.1 Letn =r (mod 4). Then the number of orbits of PSL(2, 2")
on Ps(X) for all possible orbit indices are given below.

T Ny N3y Neo Ni2o

0 q—4 1 ~4)(q—6 48 —249°+1569—448

[ 24 720
q—4 ' —4)(g—6 (g—4)(g*—20g+76)

2 6 0 24 730

2

g=2 -2)(g—8 (g—-2)(q*—229+112)

1,3 5 0 24 720

Proof Since all k-subsets are partitioned by the orbits, we have

N Naq Nao Neo _fat+1
|Gl 5 T |G|—g- + |G|—3— + |G|-2— +[GNizo = (" ¢
So by lemmas 2.1, 2.2, 2.3, 2.4, the proof is complete. 0

3 3-Designs and Large Sets

In this section, we use the results of previous section to find 3-(¢ + 1,6, )
designs with automorphism group PSL(2,q) and large sets of these de-
signs. Recall that every 3-(¢ + 1,6,)) design with automorphism group
G = PSL(2,q) is a union of distinct orbits of G on Fs(X).

Theorem 3.1 Let n =0 (mod 4). Then, there exist 3-(g+ 1,6, A) designs
with automorphism group PSL(2,q) if and only if A = 0,4 (mod 20), 1 <
A< (957, and A #4,(%3%) —i fori=4.



Proof Let D denote a 3-(¢ + 1,6,) design with automorphism group
PSL(2,q). If D exists, then by (1), 4/Aand 1 < ) < (";2). By Theorem
2.1, the indices of orbits of G on Ps(X) are 20,24,60,120. Therefore,
A=0,4 (mod 20) and A #14, (%5%) —i fori = 4.

Conversely, note that there are designs for A = 20, 24, 60, 120. It is easy
to see that if there exists D, then by replacing some suitable orbits of D by
some unused orbits, one can obtain a 3-(g + 1,6, A+ 20) design. Otherwise,
there are no more unused orbits and D is the complete 3-(¢ + 1,6, (";2))
design. ad

Theorem 3.2 Let n # 0 (mod 4). Then, there are 3-(q + 1,6, ) designs
with automorphism group PSL(2, q) if and only if 20|A and 1 < A < (%5%).

Proof Suppose that a 3-(g + 1,6,)) design with automorphism group
PSL(2, q) exists. By Theorem 2.1, the indices of orbits of G on Ps(X) are
20,60, 120. Therefore, 20|A.

Conversely, similar to the proof of Theorem 3.1, one can show that for
any A such that 20)A and 1 < A < (?3%), there exists a 3-(g+1,6, A) design.
O

Theorem 3.3 Let n = 0 (mod 4). Then, there are no PSL(2, q)-uniform
LS[N](3,6,9 + 1).

Proof Consider the action of G on Ps(X). Since Noy = 1 and the
other orbits have indices which are multiple of 20, we have no G-uniform
LS[N](3,6,9 + 1). (]

Theorem 3.4 Let n # 0 (mod 4). Then, there are PSL(2, q)-uniform
LS[N](3,6,q + 1) if and only if one of the following holds:

i) (%3%)/N =0 (mod 120),

ii) (932)/N = 20,80 (mod 120) and N < Ny,

iii) (93%)/N = 40,100 (mod 120) and N < [Nyo/2],

iv) (?3%)/N =60 (mod 120) and N < Ngo + [N2o/3).

Proof Consider the action of G on Ps(X). Let (?3%) = N(120m + 1)
where 0 < ! < 120. Suppose that there is a G-uniform large set of 3-
(g +1,6,120m + I) designs. Then by Theorem 2.1, ! = 0 (mod 20). If



[ = 20,80, then all designs of the large set contain at least one orbit of
index 20. Therefore, N < Ngo. If | = 40,100, then all designs in the large
set contain at least two orbits of index 20. Hence, N < [N/2). If I = 60,
then some designs in the large set contain orbits of index 60 and each of
the other designs contains at least three orbits of index 20. Therefore,
N < Ngo + [N20/3).

Conversely, let one of (i)-(iv) hold. Let Dy (1 < f < N) be N empty
sets. Here is a useful observation. If there are z;,z3, and z3 orbits of
indices 20, 60, and 120, respectively, such that 20z, +60z2 +120z3 = 120z,
then it is easy to see that by suitable combinations of these orbits we can
find z disjoint 3-(g+ 1,6, 120) designs. If (i) holds, then by this observation
we are done. Now let (ii) hold. Note that Ngo > N2o. Choose N orbits of
index 20 and add to each of D; (1 < i < N) one of them. If l = 80, then
Choose N orbits of index 60 and add to each of D; (1 < i £ N) one of
them. If I = 20 (respectively, [ = 80), this leaves ("32) — 20N = 120mN
(respectively, (5%) — 20N — 60N = 120mN) 6-subsets unused. Therefore,
by the observation above, Dy (1 < f £ N) can be filled with suitable
unused orbits to obtain N sets with the same size. Now {(X,Dy)| 1< f <
N} is the desired large set. Now suppose that (iii) holds. Choose 2N orbits
of index 20 and add to each of D; (1 £ ¢ < N) two of them. If ! = 100, then
also add to each of D; (1 £ i < N), one orbit of index 60. The number
of unused blocks is equal to 120mN. Therefore, by the observation above,
the remaining orbits can be divided between to Dy (1 < f < N) to obtain
N sets of the same size which results in large set {(X,Dy)| 1 < f < N}.
Finally, assume that (iv) holds. Choose z orbits (0 < z < min{N, Neo})
of index 60 and add to each of D; (1 < i < z) one of them. Choose
y = 3(N — ) orbits of index 20 and add to each of D; (z < j < N) three
of them. There are totaly (932) — 60z — 20(3(N — z)) = 120mN unused
6-subsets and therefore, by the observation above, the remaining orbits can
be appended in a suitable way to Dy (1 < f < N) to obtain NN sets of the
same size. Now {(X,Ds)| 1 £ f < N} is the desired large set. O
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