3-Designs and Large Sets of $PSL(2, 2^n)$ with Block Sizes 6

G. R. Omidi 1

Department of Mathematical Sciences, Isfahan University of Technology,

Isfahan, 84156-83111, Iran

E-mail: romidi@cc.iut.ac.ir

Abstract

We investigate the existence of 3-designs and uniform large sets of 3-designs with block size 6 admitting $PSL(2, 2^n)$ as an automorphism group.

Keywords: 3-Design; Large set of 3-designs; Projective special linear group. AMS subject classification: 05B05.

1 Introduction

Let t, k, v, and λ be integers such that $0 \le t \le k \le v$ and $\lambda > 0$. Let X be a v-set and $P_k(X)$ denote the set of all k-subsets of X. A t- (v, k, λ) design is a pair $\mathcal{D} = (X, D)$ in which D is a collection of elements of $P_k(X)$ (called blocks) such that every t-subset of X appears in exactly λ blocks. If D has no repeated blocks, then it is called simple. Here we are concerned only with simple designs. It is well known that a set of necessary conditions for the existence of a t- (v, k, λ) design is

$$\lambda \binom{v-i}{t-i} \equiv 0 \pmod{\binom{k-i}{t-i}}, \tag{1}$$

¹Part of the results of this paper is recently obtained by Li and Shen, using a different method ([10]).

for $0 \le i \le t$. An automorphism of \mathcal{D} is a permutation σ on X such that $\sigma(B) \in D$ for each $B \in D$. An automorphism group of \mathcal{D} is a group whose elements are automorphisms of \mathcal{D} . A large set of t- (v, k, λ) designs, denoted by $\mathrm{LS}[N](t, k, v)$, is a set of N disjoint t- (v, k, λ) designs (X, D_i) such that D_i partition $P_k(X)$ and $N = \binom{v-t}{k-t}/\lambda$. A large set is said to be G-uniform if each of its designs admits G as an automorphism group.

Let G be a finite group acting on X. For $x \in X$, the *orbit* of x is $G(x) = \{gx | g \in G\}$ and the *stabilizer* of x is $G_x = \{g \in G | gx = x\}$. It is well known that $|G| = |G(x)||G_x|$. If there is an $x \in X$ such that G(x) = X, then G is called *transitive*. The action of G on X induces a natural action on $P_k(X)$. If this latter action is transitive, then G is called k-homogeneous.

Let q be a prime power and let $X = GF(q) \cup \{\infty\}$. Then the set of all mappings $g: x \mapsto \frac{ax+b}{cx+d}$, on X such that $a,b,c,d \in GF(q)$, ad-bc is a nonzero and $g(\infty) = a/c$, $g(-d/c) = \infty$ if $c \neq 0$, and $g(\infty) = \infty$ if c = 0, is a group under composition of mappings called projective general linear group and is denoted by PGL(2,q). The set of all elements of PGL(2,q) for which ad-bc is a square is a group called projective special linear group and is denoted by PSL(2,q). Note that for $q=2^n$ every element of GF(q) is a square and so PSL(2,q) is isomorphic to the PGL(2,q). Thus PSL(2,q) is sharply 3-transitive on X and $|PSL(2,q)| = (q^3 - q)$. The structure of the elements of PSL(2,q) is well known (see for example [4,5]) and is given in Table 1, for $q=2^n$ where φ denotes Euler's function. In this Table the third column show the number of conjugacy classes.

Table 1

The structure of the elements of PSL(2, q), $q = 2^n$

order	order of centralizer	no. of classes	type
1	q^3-q	1	1^{q+1}
2	q	1	$1^12^{\frac{q}{2}}$
d q-1	q-1	$rac{arphi(d)}{2}$	$1^2 d^{\frac{q-1}{d}}$
d q+1	q+1	$rac{arphi(d)}{2}$	$d^{\frac{q+1}{d}}$

The group PSL(2,q) has been used for constructing t-designs by different authors, see for example [1, 2, 3, 4, 6, 7, 9, 11]. In [3, 11], for $q \equiv 3$ (mod 4) all 3-designs and uniform large sets of 3-designs with block sizes 4,5 and 6 admitting PSL(2,q) as an automorphism group were completely determined. In [2], for $q \equiv 3 \pmod{4}$ all parameters for which there exist 3-designs with block size not congruent to 0 and 1 modulo p $(q = p^n)$ with automorphism group PSL(2,q) were determined. In [8], for $q=2^n$ all 3-designs with block sizes 4, 5 admitting PSL(2,q) as an automorphism group were completely determined. In this paper, we investigate the existence of 3-designs and uniform large sets of 3-designs with block size 6 from $PSL(2, 2^n)$. Recently all 3-designs with block size 6 from $PSL(2, 2^n)$ were determined by Li and Shen, using a different method, ([10]). Since PSL(2,q) is 3-transitive, a 3- $(q+1,k,\lambda)$ design admits PSL(2,q) as an automorphism group if and only if its block set is the union of orbits of PSL(2,q) on $P_k(X)$. We determine the number of orbits for all possible orbit sizes from the action of PSL(2,q) on $P_6(X)$ and then use the results to construct $3-(q+1,6,\lambda)$ designs and large sets of these designs.

Throughout this paper, we let $q=2^n$ be a power of 2, $X=\mathrm{GF}(q)\cup\{\infty\}$ and $G=\mathrm{PSL}(2,q)$ acting on X. We also denote $G_{\{0,1,\infty\}}$ by H. It is easy to see that

$$H = \{x \mapsto x, \ x \mapsto \frac{x-1}{x}, \ x \mapsto \frac{1}{1-x}, \ x \mapsto \frac{1}{x}, \ x \mapsto 1-x, \ x \mapsto \frac{x}{x-1}\}.$$

2 Orbit Counting

In this section, we consider the action of G on $P_6(X)$ and determine the possible sizes of orbits and the number of orbits for any fixed size. For a 6-subset B of X, let $\Lambda_B = \{\{x,y,z\} | \{0,1,\infty,x,y,z\} \in G(B)\}$. The cardinality of Λ_B (denoted by λ_B) is called the *index of* G(B) which is clearly well defined. Note that $\lambda_B > 0$. We denote the number of orbits of index i by N_i .

Lemma 2.1 Let $B \in P_6(X)$. Then $\lambda_B|G_B| = 120$ and

- i) if $n \equiv 0 \pmod{4}$, then $\lambda_B = 20, 24, 40, 60, 120$,
- ii) if $n \not\equiv 0 \pmod{4}$, then $\lambda_B = 20, 40, 60, 120$,

Proof Since G(B) is a 3- $(q+1,6,\lambda_B)$ design, we have $|G(B)| = \lambda_B {q+1 \choose 3}/{3 \choose 3}$. Therefore, by $|G| = |G_B||G(B)|$, we find $\lambda_B|G_B| = 120$. By (1), $4|\lambda_B(q-1)|$ and so $4|\lambda_B|$. Moreover, $5|\lambda_B q(q-1)|$ and therefore if $n \not\equiv 0 \pmod 4$, then $5|\lambda_B|$. It follows that $\lambda_B = 20, 40, 60, 120$, if $n \not\equiv 0 \pmod 4$ and $\lambda_B = 4, 8, 12, 20, 24, 40, 60, 120$, otherwise. We now show that $\lambda_B \not\equiv 4, 8, 12$ or equivalently $|G_B| \not\equiv 30, 15, 10$.

First suppose that $|G_B| = 10$. Let K be a normal subgroup of G_B of order 5 and $g \in G_B$ be an element of order 2. Then there are $k_1, k_2 \in K$ such that $gk_1 = k_2g$. Note that k_1 and k_2 fix exactly one element x of B. Since $g(x) = k_2(g(x))$, we have g(x) = x which is a contradiction with the fact that g has no fixed point.

Now let $|G_B| = 15$. As there is a unique group of order 15 which is cyclic, G_B has an element of order 15. But such an element cannot fix B and therefore $|G_B| \neq 15$.

Finally, let $|G_B| = 30$. Let P_1 and P_2 be 3-Sylow and 5-Sylow subgroups of G_B , respectively. Then at least one of the P_1 or P_2 is normal in G_B . Therefore, P_1P_2 is a subgroup of order 15 of G_B which is impossible as described above.

Lemma 2.2 Let H act on $P_3(GF(q) \setminus \{0,1\})$. Then all nonregular orbits are of size 2 and the number of these orbits are (q-i)/6, where i=4 for even n and i=2 otherwise.

Proof Since each element of order 2 in H cannot fix any element of $P_3(GF(q) \setminus \{0,1\})$, all nonregular orbits are of size 2. Let i=4 for even n and i=2 otherwise. Let s_1 and s_2 be the number of orbits of sizes 2 and 6, respectively. It is easy to see that $2s_1 + 6s_2 = {q-2 \choose 3}$. The total number of orbits can be found by the Cauchy-Frobenius lemma. We have

$$s_1 + s_2 = \frac{1}{|H|} \sum_{g \in H} \operatorname{Fix}(g) = \frac{1}{6} \left(\binom{q-2}{3} + L \right),$$

where L is the number of 3-subsets of $GF(q) \setminus \{0,1\}$ fixed by $x \mapsto (x-1)/x$ or $x \mapsto 1/(x-1)$. Therefore, $s_1 = L/4$ and $s_2 = (2\binom{q-2}{3} - L)/12$. By Table 1, we can see that L = 2(q-i)/3.

Lemma 2.3 If $n \equiv 0 \pmod{4}$, then $N_{24} = 1$.

Proof The number of $B \in P_6(X)$ such that $|G_B| = 5$ is $(q^3 - q)N_{24}/5$. On the other hand, by Table 1, each element of order 5 of G fixes exactly 2(q-1)/5 elements of $P_6(X)$ and there are exactly 2q(q+1) elements of order 5 in G. Therefore, (q+1)q(q-1)/5 distinct 6-subsets are fixed by the elements of order 5 of G. We now have $(q^3 - q)N_{24}/5 = (q-1)q(q+1)/5$ and hence $N_{24} = 1$.

Lemma 2.4 We have $N_{20} + N_{60} = (q-2)(q-4)/24$ and

$$N_{20} + 2N_{40} = \begin{cases} \frac{(q-4)}{6} & \text{if } n \equiv 0, 2 \pmod{4}, \\ \frac{(q-2)}{6} & \text{if } n \equiv 1, 3 \pmod{4}. \end{cases}$$

Proof Let $S = \{(g,B)|g(B) = B, o(g) = 2\}$. By double counting and using Table 1, we have $|S| = 3|G|\frac{N_{20}}{6} + |G|\frac{N_{60}}{2} = \frac{|G|\binom{q/2}{3}}{q}$. So $N_{20} + N_{60} = (q-2)(q-4)/24$. Now let $S = \{(g,B)|g(B) = B, o(g) = 3\}$. By double counting and using Table 1 we have

$$|S| = 2|G| \frac{N_{20}}{6} + 2|G| \frac{N_{40}}{3} = \begin{cases} \frac{|G|\binom{(q-1)/3}{2}}{q-1} & \text{if } n \equiv 0, 2 \pmod{4}, \\ \frac{|G|\binom{(q+1)/3}{2}}{q+1} & \text{if } n \equiv 1, 3 \pmod{4}. \end{cases}$$

So

$$N_{20} + 2N_{40} = \begin{cases} \frac{(q-4)}{6} & \text{if } n \equiv 0,2 \pmod{4}, \\ \\ \frac{(q-2)}{6} & \text{if } n \equiv 1,3 \pmod{4}. \end{cases}$$

Theorem 2.1 Let $n = r \pmod{4}$. Then the number of orbits of $PSL(2, 2^n)$ on $P_6(X)$ for all possible orbit indices are given below.

r	N_{20}	N_{24}	N ₆₀	N ₁₂₀
0	$\frac{q-4}{6}$	1	$\frac{(q-4)(q-6)}{24}$	$\frac{q^3 - 24q^2 + 156q - 448}{720}$
2	$\frac{q-4}{6}$. 0	$\frac{(q-4)(q-6)}{24}$	$\frac{(q-4)(q^2-20q+76)}{720}$
1,3	$\frac{g-2}{6}$	0	$\frac{(q-2)(q-8)}{24}$	$\frac{(q-2)(q^2-22q+112)}{720}$

Proof Since all k-subsets are partitioned by the orbits, we have

$$|G|\frac{N_{20}}{6} + |G|\frac{N_{24}}{5} + |G|\frac{N_{40}}{3} + |G|\frac{N_{60}}{2} + |G|N_{120} = \binom{q+1}{6}$$

So by lemmas 2.1, 2.2, 2.3, 2.4, the proof is complete.

3 3-Designs and Large Sets

In this section, we use the results of previous section to find 3- $(q+1,6,\lambda)$ designs with automorphism group PSL(2,q) and large sets of these designs. Recall that every 3- $(q+1,6,\lambda)$ design with automorphism group G=PSL(2,q) is a union of distinct orbits of G on $P_6(X)$.

Theorem 3.1 Let $n \equiv 0 \pmod{4}$. Then, there exist $3 \cdot (q+1,6,\lambda)$ designs with automorphism group PSL(2,q) if and only if $\lambda \equiv 0,4 \pmod{20}$, $1 \leq \lambda \leq {\binom{q-2}{3}}$, and $\lambda \neq i$, ${\binom{q-2}{3}} - i$ for i = 4.

Proof Let \mathcal{D} denote a 3- $(q+1,6,\lambda)$ design with automorphism group PSL(2, q). If \mathcal{D} exists, then by (1), $4|\lambda$ and $1 \leq \lambda \leq {q-2 \choose 3}$. By Theorem 2.1, the indices of orbits of G on $P_6(X)$ are 20, 24, 60, 120. Therefore, $\lambda \equiv 0, 4 \pmod{20}$ and $\lambda \neq i, {q-2 \choose 3} - i$ for i = 4.

Conversely, note that there are designs for $\lambda = 20, 24, 60, 120$. It is easy to see that if there exists \mathcal{D} , then by replacing some suitable orbits of \mathcal{D} by some unused orbits, one can obtain a $3-(q+1,6,\lambda+20)$ design. Otherwise, there are no more unused orbits and \mathcal{D} is the complete $3-(q+1,6,\binom{q-2}{3})$ design.

Theorem 3.2 Let $n \not\equiv 0 \pmod{4}$. Then, there are $3 \cdot (q+1, 6, \lambda)$ designs with automorphism group PSL(2,q) if and only if $20|\lambda$ and $1 \le \lambda \le {q-2 \choose 3}$.

Proof Suppose that a 3- $(q + 1, 6, \lambda)$ design with automorphism group PSL(2,q) exists. By Theorem 2.1, the indices of orbits of G on $P_6(X)$ are 20, 60, 120. Therefore, $20|\lambda$.

Conversely, similar to the proof of Theorem 3.1, one can show that for any λ such that $20|\lambda$ and $1 \leq \lambda \leq {q-2 \choose 3}$, there exists a 3- $(q+1,6,\lambda)$ design.

Theorem 3.3 Let $n \equiv 0 \pmod{4}$. Then, there are no PSL(2,q)-uniform LS[N](3,6,q+1).

Consider the action of G on $P_6(X)$. Since $N_{24} = 1$ and the other orbits have indices which are multiple of 20, we have no G-uniform LS[N](3,6,q+1).

Theorem 3.4 Let $n \not\equiv 0 \pmod{4}$. Then, there are PSL(2,q)-uniform LS[N](3,6,q+1) if and only if one of the following holds:

- i) $\binom{q-2}{3}/N \equiv 0 \pmod{120}$,
- ii) $\binom{q-2}{3}/N \equiv 20,80 \pmod{120}$ and $N \leq N_{20}$,
- iii) $\binom{q-2}{3}/N \equiv 40,100 \pmod{120}$ and $N \leq \lfloor N_{20}/2 \rfloor$, iv) $\binom{q-2}{3}/N \equiv 60 \pmod{120}$ and $N \leq N_{60} + \lfloor N_{20}/3 \rfloor$.

Consider the action of G on $P_6(X)$. Let $\binom{q-2}{3} = N(120m+l)$ where $0 \le l \le 120$. Suppose that there is a G-uniform large set of 3-(q+1,6,120m+l) designs. Then by Theorem 2.1, $l \equiv 0 \pmod{20}$. If l=20,80, then all designs of the large set contain at least one orbit of index 20. Therefore, $N \leq N_{20}$. If l=40,100, then all designs in the large set contain at least two orbits of index 20. Hence, $N \leq [N_{20}/2]$. If l=60, then some designs in the large set contain orbits of index 60 and each of the other designs contains at least three orbits of index 20. Therefore, $N \leq N_{60} + [N_{20}/3]$.

Conversely, let one of (i)–(iv) hold. Let D_f ($1 \le f \le N$) be N empty sets. Here is a useful observation. If there are x_1, x_2 , and x_3 orbits of indices 20, 60, and 120, respectively, such that $20x_1 + 60x_2 + 120x_3 = 120x$, then it is easy to see that by suitable combinations of these orbits we can find x disjoint 3-(q+1,6,120) designs. If (i) holds, then by this observation we are done. Now let (ii) hold. Note that $N_{60} \ge N_{20}$. Choose N orbits of index 20 and add to each of D_i $(1 \le i \le N)$ one of them. If l = 80, then Choose N orbits of index 60 and add to each of D_i $(1 \le i \le N)$ one of them. If l = 20 (respectively, l = 80), this leaves $\binom{q-2}{3} - 20N = 120mN$ (respectively, $\binom{q-2}{3} - 20N - 60N = 120mN$) 6-subsets unused. Therefore, by the observation above, D_f $(1 \le f \le N)$ can be filled with suitable unused orbits to obtain N sets with the same size. Now $\{(X, D_f)| 1 \le f \le$ N} is the desired large set. Now suppose that (iii) holds. Choose 2N orbits of index 20 and add to each of D_i $(1 \le i \le N)$ two of them. If l = 100, then also add to each of D_i $(1 \le i \le N)$, one orbit of index 60. The number of unused blocks is equal to 120mN. Therefore, by the observation above, the remaining orbits can be divided between to D_f $(1 \le f \le N)$ to obtain N sets of the same size which results in large set $\{(X, D_f) | 1 \le f \le N\}$. Finally, assume that (iv) holds. Choose x orbits $(0 \le x \le \min\{N, N_{60}\})$ of index 60 and add to each of D_i $(1 \le i \le x)$ one of them. Choose y = 3(N-x) orbits of index 20 and add to each of D_j $(x < j \le N)$ three of them. There are totaly $\binom{q-2}{3} - 60x - 20(3(N-x)) = 120mN$ unused 6-subsets and therefore, by the observation above, the remaining orbits can be appended in a suitable way to D_f $(1 \le f \le N)$ to obtain N sets of the same size. Now $\{(X, D_f)|\ 1 \le f \le N\}$ is the desired large set.

4. Acknowledgments

This work was partially supported by IUT (CEAMA).

References

- [1] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. I, Second edition, Cambridge University Press, Cambridge, 1999.
- [2] P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from PSL(2, q), Discrete Math. 306 (2006), 3063-3073.
- [3] C. A. Cusack, S. W. Graham and D. L. Kreher, Large Sets of 3-Designs from PSL(2, q), with Block Sizes 4 and 5, J. Combin. Des. 3 (1995), 147-160.
- [4] C. A. Cusack and S. S. Magliveras, Semiregular Large Sets, Des. Codes Cryptogr. 18 (1999), 81-87.
- [5] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Dover Publications, Inc., New York, 1958.
- [6] D. R. Hughes, On t-Designs and Groups, Amer. J. Math. 87 (1965), 761-778.
- [7] S. Iwasaki, Infinite Families of 2- and 3-Designs with Parameters v = p+1, $k = (p-1)/2^i + 1$, where p Odd Prime, $2^e \top (p-1)$, $e \ge 2$, $1 \le i \le e$, J. Combin. Des. 5 (1997), 95-110.
- [8] M. S. Keranen and D. L. Kreher, 3-designs of $PSL(2, 2^n)$ with block sizes 4, 5, J. Combin. Des. 3 (2004), 103-111.
- [9] D. L. Kreher, t-Designs, t≥ 3, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton (1996), 47-66.
- [10] W. Li and H. Shen, Simple 3-designs of PSL(2, 2ⁿ) with Block Sizes 6, Discrete Math., In Press, Corrected Proof, Available online 24 September 2007.
- [11] G. R. Omidi, M. R. Pournaki, and B. Tayfeh-Rezaie, 3-Designs from PSL(2, q) with block size 6 and their large sets, Discrete Math. 307 (2007), 1580-1588.