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Abstract

In this note, we show that there is no (945,177, 33)-difference
set in any group G of order 945 with a normal subgroup K such
that G/K 2 Ca7 x Cs, and hence no cyclic difference set with such
parameters exists. This fills one entry of Baumert and Gordon’s
table with 'No’,
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1 Introduction

Let G be a multiplicative group of order v. A (v, k, A)-difference set D in G
is a subset of cardinality & such that every non-identity element of G can
be written exactly A ways as did; !, where d;,d; € D. In the group ring
language, we have DD(=1) = n+AG, wheren = k—\, D =Y, d € Z[G],
DY =%, . pd~! € Z[G]. We say that D is abelian, nonabelian or cyclic
if G has the corresponding property. We refer the reader to [2] for details.

For a finite abelian group G, we denote by G the character group of
G. We also denote by exp(G) the least common multiple of the orders of
elements in G. For x € G and ¢ € Gal(Q(éezp(c))/Q), we have x° € ¢
where x°(g9) = o(x(g)) for each g € G. It is well known that character
theory is a sufficient tool for the study of abelian difference sets. The
inversion formula is a standard result concerning abelian characters and is
stated below:

Inversion formula. Let G be an abelian group of order v. If A =
2 _geG 399 € Z[G], then ag = 3 3 x(Ag™'), g € G, where the summation
is taken over all characters of G.

Our main result is the following theorem.
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Theorem 1. There is no (945,177, 33)-difference set in any group G of
order 945 with o normal subgroup K such that G/K = Ca7 x Cs.

As a corollary, we have
Corollary 2. There is no cyclic (945,177, 33)-difference set.

In the second section, we will give the preliminaries needed for our proof.
We give the proof of our main result in the last section.

2 Preliminaries

For a positive integer m, &, is a primitive m-th root of unity in the complex
number field, and Z;, is the unit group in Z,,. The algebraic integer ring of
the cyclotomic field Q(éx) is Z[ém), see [6]. We say X € Q(&m) essentially
lies in Q(&;) for some t|m if X&J, € Q(&;) for some j. We have the following
deep result due to Schmidt.

Result 3. (5, Theorem 2.2.8] Assume XX = n for X € Z[¢m], where n
and m are positive integers. Then X&, € Z[Er(m,n)] for some j, where
F(m,n) is a positive integer determined by m,n.

Usually, F(m,n) is much smaller than n, so X essentially lies in a
smaller cyclotomic field. We do not include a definition for F(m,n) here,
since we do not have to invoke this deep result in our special case. The
interested reader can find it in [5, Definition 2.2.5].

We define the function 6(™ : Z — {0,1}, §(™(t) = 1if t =0 mod m,
and 6™ (t) = 0 otherwise. We need the following result from [3].

Result 4. [3, Lemma 2.1] Let w1, w2 € Z[{m] such that wy € woZlém] and
|wr| = |wa|, then wy = twsky, for some integer c.

Proposition 5. For a positive integer v and a prime p, define Cpr(u) =
r—1 (P) (q,! ; =100 ot

, i (PsP (W) -1) ifu=p"" v\ €Z,
Z"ez;' &+ then Cpr (u) = {0 otherwise. ’
Proof. We have that [];cz. (z—&}r) = ;%—:;1‘—1-1- By counting the coefficient

pT -

of zP" ' (P=1)=1 op both sides, we have Cpr(1) = 0if 7 > 1 and Cp(1) = —1.
Now the result follows from an inductive process and the fact that Z;, is a
multiplicative group. 0

Lemma 6. Suppose G = {(a) x (), o(a) = p®, o(B) = q, and p,q are
distinct primes, p > a > 3. D € Z[G] and for any character 7 € G,
(D) essentially lies in Q(€pg). Further suppose gt |7(D)|? for T € G and
o(r) = p,i > 2. If we write D = Y07y Dy’ with D; € Z[(aP) x ()] ,
then we have Dy = {aP) x Lo with Lo € Z[{B)} for some t.
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Proof. We denote by x,; the character of G which maps a, 8 to &5 and
{-’ respectively. Fix some 1,0 < i < a—2. Since xp ;(Di) € Z{Epa_(- abs
and 1,&pa-s,- -+ ,ﬁp,, _ are linear independent over Z[€,a-:-1,], which is clear
from the fact that [Q(£e-s4) : @(£pa-i-14)] = p, we must have some t(3, j) €
{0,1,--+,p—1} such that xp¢ ;(D) = Xpt,5(Degs))Ee?, and X ;(Die) = 0
when k # (2, j).

We have t(i, j) = t(i,1) for j € Zj, since xpi; = Xpi,1 for some o €
Gal(Q(gpa_,q)/Q(Epa-.)) We show tha.t t(i,1) = t(3, 0) Since (1 — &;)|
(xpt,1(Dj)=Xpi 0(Dj)) in Z[EP.. i, we have (1—-&,)|xp¢,0(D;) for j # (3, 1)
It follows that g|x,« o(Dj5) in Z[gpa—i] for j # £(4,1). Because q { |xp+,0(D)[?,
we must have xp: o(D;) = 0 for j # (3, 1), and hence ¢(, 1) = ¢(¢,0). Write
t(2) := t(4,0).

Because p > a, we have at least one ¢ between 0 and p~1 that is distinct
from any £(i),0 < i < @ — 2. Then for any character 7 € G, p?|o(r), we
have 7(D;) = 0. It follows that D, = () x Lo with Lo € Z[(B)] by an
application of the inversion formula, or use [4, Cor 1.2.5, p.18]. a

Remark: f D =3,  dy 08", then Dy = Eu, dt4pur vOP* 'Bv. Un-
der the assumption of the above lemma, in order to get the coefficient of
D, using x(D), x € G, we need only to consider the characters of G whose
orders divide pg. For example, for a fixed i, 0 < i < a — 2, if we have

Xpi 1 (D) = £, 5 ail, and xpe o(D) = £, 3, b€, a,,b,, € Z, then

Yo D Xmpta(DamtP -v)_Zcp‘.-( t—pu'+t(i)+slp® 1) Hy(v),
mez —i n€Z;

Y Xmpto(DamPYB7Y) = 3 Cpani (—t—pu'+(3)+sl'p* 1) Fy (v),
l'

mez‘,a-i

with Hj, Fi» being integer-valued functions of v, and 7p + sq = 1. Both
terms are equal to 0 according to Proposition 5. So we have

1 —t o
dt+pu’,v = — E : X(Da tﬁ U)'
p%q
x€G,0(x)}Ipq

From now on, we suppose G is a group of order 945 with a2 normal
subgroup K such that H := G/K = (a)x(8), o(a) = 27, 0(8) = 5, and D is
a putative (945, 177, 33)-difference set in G. Let p : G — H be the canonical
epimorphism, and write S := p(D) = 2, ;=0 S;jotB? € Z[H). Here
S;,;'s are nonnegative integers not exceeding 7.

We denote the character of H which maps a to &, and B to &5 by xi,4,
0<i<26,0<j<4. Then xtimj = xz ™, where o), € Gal(Q(&135)/Q)

such that o1,;m(627) = &by, o1m(é5) = €, L € 23, m € Z3.
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In the ring Z[€n], m = 3,9, 27 or 5, the principle ideal (2) is prime.
In the ring Z[£n], m = 15, 45 or 135, (2) = (§fs — &35 — 1)(61s — &35 — 1),
where the principle ideal (&5 — &35 — 1) is prime in the corresponding ring.
In the ring Z{€35¢] (r 2 0, s = 0 or 1), the principle ideal (3) decomposes
as (3) = P¥(")| where P is a prime ideal fixed by complex conjugation and
¢ is the Euler’s function. We fix the following notations:

Do =4; Oy = €]s — €55 + &35 + &5 — €35 — 15

Ay = €1} + 4605 — €55 — €15 + €35 — €15
Then Al = —(5‘115 - 6:1;5 - 1)2, |A1| = 2, and Az = —A% . §5, lAgl =4,

3 Proof of the main result

In this section, we give the proof of Theorem 1. For any non-principle char-
acter x of H, we have x(S)x(S) = 144. From the discussions in the last
section, we know that x(S) essentially lies in Q(£15). We note that this fact
also follows easily from Result 3. It follows from Lemma 6 and the remark
after it that we can find ¢ such that Seysu v = T5(At+3u v + Bessuw),

where Ay = St_o X0,4(Sa™*B?), Bup = Lty Tojmo Xoi,j(Sa™¥B77).

Now we compute these functions separately.

(1) If x = xo,1, we have x0,1(S) € 12Z[£s), and it follows from Result 4
that x0,1(S) = 12€0£§, €0 = £1. By replacing S with S37°, we can assume
that xo0,1(S) = 12e0. Then we have: Atysu,v = 177+ 12€0(56) (v) - 1).

(2) If x = x9,0, We have x0,0(S) € 12Z[£3), and hence xg,0(S) = 126145,
¢, = £1. By replacing S with S(-1) (and replacing ¢ with —t correspond-
ingly) if necessary, we have three possibilities: xo,1(S) € 3:A:Z[£;5] with
0<i<2andrg=1r=2mr=-1L In each case, we have xg,1(S) =
Be11ri AESET |, €11 = 1. Since 1—-£5/xs,1(S) — Xo,0(S) in Z[£15), we must
have €1; = €1, and i, = ¢ mod 3. Write xo,1(S) = 3e17(3, miéls)e568™,
with r =73, A; = 3, méls, and we have:

Biysw v = 1261Ca(—t+c) +3e17 T, mCs(—t — 1+ ¢)(56®) (2l +my —v) —1).

Proof of Theorem 1. We show that there is always some v such that
S is not an integer, contradicting that S:,,’s are nonnegative integers,
and Theorem 1 follows. Write L, = A, + B; . There are three cases.

Case 1. x9,1(S) = 1261565 In this case, L, = 60€; (363 (c — t) —
1)6®) (m; — v) + 1260(56®) (v) — 1) + 177. Let v be an element such that
v#0, m; mod 5, then L, = 177 — 12¢o which is never divisible by 135.

Case 2. x9,1(S) = 6e1A:£565™ . Write Ay = 37, %5, with (1, ) being
the pairs

(7,1),(6,-1),(5,1),(4,1),(3,-1),(1,-1).
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We have Y, viC3(—t — 1l + ¢) = 3 — 963 (c — t) by a simple calculation.
Let v = 0, then Lo = 177 + 48¢p + 6¢1(—5 + 1563 (c — t) + 5z), where
z =Y, mB6®) (=t —1+c) - 1)) (2l + m;). When¢t—c =0 mod 3,
Lo = 177 + 48¢g + 6¢1 (10 + 5z), and z takes on two values: —1, —2. When
t—c#0 mod3, Lo = 177 + 48¢p + 6¢1(—5 + 5z), and z takes on three
values: 1, —2. In neither case Ly is divisible by 135.

Case 3. X9,1(S) = —3e180656T. Write Ay = 3, mels, with (I,v)
being the pairs

(11, l), (9, 4), (8; —l)s (7y -1), (6’ 1)1 (5) _1)'

We have Y-, 11Ca(—t — I +¢) = —6 + 186 (¢ — t). Take any v such that
v # 0,m; +3 mod 5, then L, = 177 — 129+ 3¢1(~10 + 3063 (c — t) — 5y),
where y = 3, (36 (=t =1+ ¢) - 1)6)(20 + m; —v). Whent—c=0
mod 3, L, = 177 — 12¢p + 3¢;(20 — 5y), and y takes on two values: 1, 8.
When t ~c# 0 mod 3, L, = 177 — 12¢9 + 3¢;(—10 — 5y), and y takes on
two values: 1, —2. In neither cases L, is divisible by 135.
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