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Abstract

A clique C is an extreme clique of an interval graph G if there
exists some interval model of G in which C is the first clique. A
graph G is homogeneously clique-representable if all cliques of G
are extreme cliques. In this paper, we present characterizations of
extreme cliques and homogeneously clique-representable graphs.
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1 Introduction

A graph G is an interval graph if there is a correspondence between V(G)
and a family of intervals R = {I, | v € V(G)} of the real line such that,
for all distinct u,w € V(G), , NI, # 0 < (u,w) € E(G). Such a
family R is called an interval model of G. The class of interval graphs is
a well-known class [4]. Figure 1 illustrates an interval graph and one of its
interval models. We assume that all interval extreme points are distinct
and denote the left and right extreme points of an interval I, respectively
by ¢(I,) and r(I,).

Note that any set of vertices corresponding to intervals crossed by some
vertical line induces a complete subgraph. However, this complete set is
not necessarily maximal. A cligue is a maximal set that induces a complete

graph.
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Figure 1: Interval graph and interval model.

Given an interval model, consider a set of vertical lines, each one cor-
responding to a clique of the graph. Then, the cligue order of that model
is the linear order on the set of cliques of the graph such that the clique C;
precedes the clique C; in that order if and only if the vertical line corre-
sponding to C; is at the left of the vertical line corresponding to Cj in the
model. Figure 2 displays the clique order of the model given in Figure 1.
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Figure 2: Interval model whose clique order is C; < C2 < ... < Cs.

Not every linear order on the set of cliques is a clique order. For
example, it is easy to see that a linear order in which there exist cliques
C, Co and C; (in this order) such that v € C; and v € C3 but v ¢
C, cannot be a clique order, since the interval associated to v would be
interrupted by the clique C in any supposed model with that linear order
of the cliques. Therefore, a necessary condition to any clique order is
that all cliques containing some vertex v are consecutive within this order.
In fact, this is a sufficient condition as well, according to a well-known
characterization by Fulkerson and Gross [2]:
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Theorem 1 (Fulkerson and Gross, 1965). A graph is an interval graph
if and only if there exists a linear order of its cliques such that, for each
vertex v of the graph, the cliques containing v are consecutive within the
order.

Another well-known characterization of interval graphs is due to Booth
and Lueker [1].

Theorem 2 (Booth and Lueker, 1976). A graph G is an interval graph if
and only if there exists a PQ-tree representing G.

A PQ-tree of an interval graph G is a special ordered tree whose set
of leaves is the set of cliques of G and each internal node is either a P node
or a @ node. P nodes have at least two child nodes and @ nodes have
at least three child nodes. The special property of a PQ-tree is that the
linear order on the cliques obtained by reading its leaves from left to right
is a clique order. . Conversely, for any clique order C of G, there exists a
sequence of operations on the tree such that after the application of them,
the new order obtained by reading the leaves from left to right is precisely
C. Each operation is either a permutation of the children of a P node or a
reversal of the children of a @ node. So, in some sense, a PQ-tree encodes
all possible clique orders of the associated interval graph.

C, G ¢ € C C

Figure 3: A PQ-tree of the graph in Figure 1.

A vertex v of an interval graph is an eztreme verter if there exists an
interval model in which ¢(1,) is the first interval extreme point, i.e., the
leftmost extreme point of the model. For instance, Figure 1 shows that the
interval I is an extreme vertex. It is easy to see that it is not the unique:
I3 is also an extreme vertex (just consider the reversal of the model in
Figure 1).

A clique C is an extreme clique of an interval graph if there exists an
interval model R such that C is the first clique within the clique order of
R. For cxample, the model in Figure 2 shows that the clique C; is an
extreme clique, and by taking the reversal of that model, we see that so is
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Cs. However, not every clique is an extreme clique. It is easily shown that
there is no clique order of G in which Cj is the first clique.

The first characterization of extreme vertices by forbidden subgraphs
in interval graphs is due to Gimbel [3].

Theorem 3 (Gimbel, 1988). A vertez v of an interval graph G is an
extreme vertez if and only if G contains none of the forbidden induced
subgraphs depicted in Figure 4 with v in the indicated position.
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Figure 4: Forbidden induced subgraphs for an extreme vertex.

The remaining of the paper is as follows. In Section 2, we show a
characterization of extreme cliques by forbidden induced subgraphs. In
Section 3, we define and characterize the class of graphs in which all their
cliques are extreme cliques.

2 Characterization of Extreme Cliques

Let G = (V,E) be a graph. We denote by G[W|, W C V, the induced
subgraph of G by W. The neighborhood of a vertex v, denoted by N(v),
is the set {w € V | (v,w) € E}. A vertex v € V is said to be a simplicial
vertez if N(v)U{v} is a clique of G. If a clique contains a simplicial vertex,
then it is called a simplicial cligue. A vertex v is universal to a set of
vertices W C V if v is adjacent to each vertex w € W. A flip of R is the
new model obtained by reversing horizontally the intervals of R through
a vertical line that crosses R. A submodel R’ of R is an interval model
obtained by the removal of some intervals of R. A submodel of R induced
by the set of vertices W is the submodel obtained by the removal in R of the
intervals that are not associated to vertices of W. For convenience, a vertex
v and its associated interval in a model may be used interchangeably if no
ambiguity occurs. So, for example, a vertex v universal to a submodel R
means that v is universal to the set of vertices which have their associated
intervals in R.
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The following lemma is clear.
Lemma 4. If C is an eztreme clique, then C is a simplicial clique.

We show next another property, which will be useful in the character-
ization of extreme cliques.

Lemma 5. Let C be a simplicial cliqgue of an interval graph G such that
for every simplicial vertez s € C, G does not contain the induced subgraphs
in Figure 5. Let R be an interval model of G in which C is neither the first
nor the last clique of R and let Cy and Cy be the cliques which immediately
precedes and succeeds C in R, respectively. Then, C;yNC 2 CoNC or
cincceync.

Proof. Suppose for a contradiction that the claim is false. Then there exist
u1 € C1 N C such that u; ¢ Cy, and uy € C3 N C such that uy ¢ C;. Since
C, C; and C; are pairwise distinct, there exist a € C; and b € C; such that
a,b ¢ C. Since C is an extreme clique, by Lemma 4, there exists a simplicial
vertex s € C. Therefore, there exists in G the subgraph G[{s, u1, a, uz,b}]
of type (b), a contradiction. O

Next result\presents an extreme clique characterization by forbidden
subgraphs.

Theorem 6. Let G be an interval graph and C be a clique of G. Then C
is an extreme clique if and only if C is simplicial and G contains none of
the induced subgraphs in Figure 5, where s is a simplicial vertez of C.

Xy

vk21

(a) (d)

Figure 5: Forbidden induced subgraphs for an extreme clique.

Proof. If C is an extreme clique, then let R be an interval model of G such
that C is the first clique of R. By Lemma 4, there exists a simplicial vertex
s € C. Thus C is a simplicial clique. We show that G does not contain the
forbidden subgraphs of Figure 5. Suppose, by way of contradiction, that G
contains the induced subgraph (a) or (b) of Figure 5. Since C is the first
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clique of R, the model “grows” to the right of s. Try to build R in the
following cases:

e G contains the induced subgraph of type (a) (Figure 6): The unique
possible model of the subgraph G[{s, a,c, e}] is the one shown in the
figure. Therefore, the interval b must be located in the model between
the intervals s and c. Now the interval d must intersect b, but not a,
which is impossible.
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Figure 6: Subgraph of type (a).

e G contains the induced subgraph of type (b) (Figure 7): The unique
possible model of the subgraph G[{s,a,z1,...,2}] is the one shown
in the figure. Therefore, the interval b must be located in the model at
the right of zx and intersecting a. Now, the interval ¢ must intersect
z), but not a, which is impossible.
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Figure 7: Subgraph of type (b).

Conversely, let C be a simplicial clique of G such that there do not
exist in G induced subgraphs of type (a) and (b) with a simplicial vertex
s € C. Let R be an interval model of G. We show that it is possible to
transform R into a new model in which C is the first clique.

If C is the first clique of R, no transformation is needed. If C is the
last clique of R, the transformation consists simply in flipping R. If C is
neither the first nor the last clique of R, let C; and C> be the cliques which
immediately precedes and succeeds C in R, respectively. By Lemma 5, we
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know that CyNC 2 CoNCor C;NC € CoNC. Since C;, C and C, are
distinct cliques, there exist a € C) and b € C; such that a ¢ C and b ¢ C.
We obtain our transformation by induction on the number k of cliques of
G. : ‘

Consider the case k = 3. Assume without loss of generality that C; N
C 2 CaoNC. Exchanging the positions of C; and C we obtain a new interval
model of G in which C becomes the first clique. Note that this exchange
is possible because C;NC D CoNC.

Now, suppose that the claim is true for any graph G with less than
k > 3 cliques.

If G is disconnected, then let GC be the connected component of G
that contains the clique C and let R be the submodel of R induced by
V(G®). Since the number of cliques of GC is less than k, then by induction
hypothesis we obtain from RC another model R’ in which C is the first
clique. Removing from R the submodel R€ and adding R’ C to the left of
the model, we obtain an interval model of G in which C is the first clique.
Otherwise, if G is connected, let R; and R be the submodels induced by
the union of all cliques that are at the left and at the right of C in R,
respectively.

ECiNC > CanCor CiNC C CaNC, suppose without loss of
generality that C; NC D C, NC. Otherwise, CyNC =C,NC.

For both cases, note that, if each vertex v € C; N Co were universal
to Ry, then we could obtain a model of G in which C is the first clique by
moving R, flipped to the left of Ry, and then flipping the entire model. It
is easy to check that the resulting model is an interval model of the same
graph, but now with C as the first clique. Otherwise, let w € C; N C be
the vertex that is not universal to R, with the rightmost left extreme point
in R. Let z; be the interval of Ry such that it does not intersect w, and
choose that with the rightmost right extreme point. Since G is connected,
then let z; be the interval that intersects z; and w with the rightmost right
extreme point.

Consider the following cases:

1. C1NC > Cy; N C (Figure 8): Then there exists a vertex v € C; N C
such that u ¢ C; N C. We show that there does not exist a path in
G between z; and u with only vertices associated to intervals in R,
which are not in CoNC. Suppose, by way of contradiction, that there
exists such a path and pick a minimum path P = z,,z,,...,Zm,u
of such a type. Since P is minimum, two vertices of P are adja-
cent if and only if they are consecutive in P. If z,, € C, G con-
tains the forbidden subgraph G[{s,w,b,zpm,...,z2,21}] of type (b),
a contradiction. Otherwise, then G contains the forbidden subgraph
G[{s,w,b,u,Zm,...,T2,21}] of type (b). Therefore, there does not
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exist such a path.

Thus, there exist consecutive cliques C] preceding Cj between C; and
the rightmost clique which contains z; such that C{ N C5 € C; N Ca.
By the choice of w (w € C;NCy with the rightmost left extreme point
in R), we have C{ N C5 =C1 N Ca.

Figure 8: Case in which C,NnC > ConC.

Next, let G’ be the graph obtained from G by removing the vertices
belonging to any clique from Cj until Cj, except those in C; N Ca.
Let Re be the submodel of R induced by the cliques from Cj until
C,, after having removed the vertices of C; N Ca. Let Rgr be the
submodel of R obtained by the removal from R of the intervals that
are in Re. It is clear by construction that R is an interval model
of G'. Furthermore, since C} and C; are distinct cliques, G" has less
than k cliques. Since the required properties of C also hold for G’, the
induction hypothesis implies that we can obtain a model R’ from R¢:
in which C is the first clique. The model obtained by the insertion
into R’ of R¢ flipped between C and the remaining of R’ is clearly
an interval model of G, in which C is the first clique.

. C1NC = C3NC (Figure 9): if each vertex v € C; NCy were universal
to Ry, then we could obtain a model in which C would be the first
clique, moving R; flipped to the right of Ry. It is clear that the
resulting model would be an interval model of the same graph, but
with C as the first clique. Otherwise, let w’ € C; N C; be the vertex
which is not universal to Re with the leftmost right extreme point
of R. Let y; € Ry be the interval which does not intersect w’ with
the leftmost left extreme point. Since G is connected, let y2 be the
interval that intersects y; and w’ with the leftmost left extreme point.
We show that at least one of the following statements is true: (i) the
set of the vertices common to both the rightmost clique that contains
2, and its immediate successor in R is a subset of C; N Ca; (i) the
set of the vertices common to both the leftmost clique that contains
y1 and its immediate predecessor in R is a subset of C; N Ca.
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Figure 9: Case in which C;NC =CyNC.

Suppose, by way of contradiction, that £ ¢ C,NC; and y» ¢ C;NC,.
Since C; NC = CoNC, then z3,y; ¢ C. If w = w’, then there
exists the forbidden subgraph G[{s,w,z2,z1,y2,31}] of type (a), a
contradiction. Otherwise, if w # w’, because of the choice of w and
w' we have (z,%’) € E(G) and (w,y2) € E(G). If (w,y) ¢ E(G),
then there exists the forbidden subgraph G[{s,w,z2,21,v2,1}] of
type (a). Therefore (w,y;) € E(G). If (z),w') ¢ E(G), then there
would exist the forbidden subgraph G[{s,w’,z2,z1,y2,%1}] of type
(a), a contradiction as well. Thus, (z1,w’) € E(G). Therefore there
exists the forbidden subgraph G{{s,w,y1,w’, z;}] of type (), a con-
tradiction.

Consequently, our claim is true. Without loss of generality, suppose
that the set of the common vertices to both the rightmost clique
that contains z; and that clique’s immediate successor in R, denoted
respectively by C] and Cj, is a subset of C; N C,. Finally, we build
the graph G’ and complete the proof as in the previous case.

This completes the proof. O

3 Homogeneously Clique-Representable

Graphs

After having characterized extreme vertices in [3], Gimbel characterizes
the family of graphs whose vertices are all extreme vertices, called homoge-
neously representable graphs. Extending this concept to extreme cliques, we
define a graph G to be homogeneously clique-representable if all cliques of G
are extreme cliques. In this section, our goal is to provide a characterization
of such graphs. Note that the class of homogeneously clique-representable
graphs is a subclass of that of homogeneously representable graphs. And
this inclusion is*proper: a path of order 4 is homogeneously representable,
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but not homogeneously clique-representable, and this example is the small-
est graph which separates these two classes.

A bull is the subgraph obtained in Figure 5 (b) for k = 1. In (3], the
following characterization is presented:

Theorem 7 (Gimbel, 1988). An interval graph is homogeneously repre-
sentable if and only if it contains neither a path of order 5, nor a bull as
an induccd subgraph.

The following lemma warrants that a connected interval graph is not
homogeneously clique-representable when it does not contain a universal
vertex.

Lemma 8. Let G be an interval graph. If G is homogeneously clique-
representable, then for each connected component G; of G, there ezists
some vertez in G; which is universal to G;.

Proof. Let R be an interval model of G, and R; be the submodel of R
induced by G;. Let C; < ... < C, be the clique order of R;. Let I, be
the interval with the rightmost right extreme point such that v € C;. Let
k be the largest integer such that v € Cj. Suppose there is no universal
vertex in G;. Then, k < q. Since the cliques Ci and Ci,; are distinct,
there exists u € Ci4.1 such that u ¢ Ci. Since G; is connected, there exists
some vertex w € Cx NCry1. Note that w ¢ Cy or the choice of I, would be
a contradiction. Since any extreme clique is a simplicial clique, there exist
simplicial vertices s’ € C; and s € Ci. Consequently, G contains the for-
bidden subgraph G[{s,w,u,v,s}] of type (b) in Figure 5, a contradiction.
Therefore, each connected component G; of G contains a universal vertex
in G;. a

The recursive procedure below produces an interval model on condition
that, in each stage, it is applied to graphs having a universal vertex.

Procedure Model(G)
1. If V(G) = {v}, then return R = {I,,}.

2. If G is disconnected with connected components G1,...,Gy, let R;
be the return of Model(G;). Return R = R, U...UR,, such that R;
is entirely at the left of R;4y, forall 1 <7 <w.

3. If G does not contain a universal vertex, return FAIL. Otherwise,
let u be some universal vertex of G and R’ be Model(G \ u). Return
R as being R’ added by the interval I, universal to R’.

Next theorem characterizes the homogeneously clique-representable
graphs.
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Theorem 9. Let G be an interval graph. The following affirmatives are
equivalent:

(a) G is a homogeneously clique-representable graph.

(b) G contains no induced path of order 4.

(c) Interval models of G can be obtained by ezecuting Model(G ).

(d) No PQ-tree of G contains a Q node.

Proof. (a) <= (b): Let G be an interval graph. Suppose that G is
homogeneously clique-representable. By Lemma 4, it follows that each
clique of G is simplicial. Suppose there exists an induced path v;, v, v3, v4
in G, and consider a clique C that contains v, and v3. Since C contains a
simplicial vertex s, there exists the forbidden subgraph G[{s, vy, v2,v3,v4}]
of type (b) in Figure 5, a contradiction. Conversely, suppose that G does
not contain an induced path of order 4. By way of contradiction, suppose
there exist consecutive cliques Cy, C, C2 such that C is not simplicial. Since
C1 and C are distinct cliques, then there exist v; € C;\ C and v3 € C\ C}.
Similarly, there exist v4 € C; \ C and v; € C'\ C». Since C is not simpli-
cial, then v € C; and vs € Ca. Therefore, G contains the induced path
G[{v1,v2,v3,v4}], a contradiction. Thus, every clique of G is simplicial.
Since none of the simplicial vertices are contained in the forbidden sub-
graphs, otherwise G would contain an induced path of order 4, all cliques
of G are extreme cliques.

(a) <= (c): It is clear that G is homogeneously clique-representable
if and only if each connected component of G is homogeneously clique-
representable. Furthermore, if G is a connected interval graph, then G is
homogeneously clique-representable if and only if G \ u is homogeneously
clique-representable, where u is a universal vertex of G, whose existence is
guaranteed by Lemma 8. Therefore, an interval graph G is homogeneously
clique-representable if and only if the procedure Model(G) terminates suc-
cessfully.

(a) <= (d): Let T be some PQ-tree of G. Note that G is homogeneously
clique-representable if and only if there exists no clique C of @ such that
there is no PQ-tree T' of G such that: (¢) T” is obtained from T by reversals
of the children of @ nodes and permutations of the children of P nodes,
and (i) the clique order corresponding to T” has C ss its first clique. On
the other hand, there exists such a clique C if and only if there exists a
Q node in T, since a Q node has at least three children, meaning that at
least one clique can not be an extreme clique (a clique descendant of some
“internal” child node of such a Q node). a

As a remark, the equivalence (a) <= (b) of the previous theorem im-
plies that the class of homogeneously clique-representable graphs coincides
with that of trivially perfect graphs, defined by Golumbic [4].
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4 Conclusion

In [3] both characterizations of extreme vertices and of homogeneously
representable graphs by forbidden subgraphs are presented. In this work,
the goal has been to extend these characterizations to extreme cliques.
Actually, we have characterized extreme cliques of an interval graph by
forbidden subgraphs. In addition, the concept of homogeneously clique-
representable graphs has been introduced and characterized.

It is possible to obtain the characterization of extreme cliques pre-
sented in this work from the characterization of extreme vertices given in
Theorem 3. However, our proof is interesting because it is self contained, in
a way that differently from the characterization of extreme vertices, it does
not use the forbidden subgraphs of interval graphs. Furthermore, it leads
to an algorithm that when applied to an interval model in which the con-
sidered extreme clique C is not the first one, it produces another interval
model of the same graph, having C as the first.
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