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Abstract. Let B be a bipartite graph. We obtain two new results as
follows. (1) Suppose that u € V(B) is a vertex such that Np(u) contains
at least |Ng(u)| — 1 odd vertices. Let f : V(B) — N be the function such
that f(u) = 1 and f(v) = [dB(v)/2] + 1 for v € V(B)\u. Then B is
f-choosable. (2) Suppose that u € V(B) is a vertex such that every vertex
in Np(u) is odd, and v € V(B) is an odd vertex that is not adjacent to u.
Let f : V(B) — N be the function such that f(u) = 1 and f(v) = [dp(v)/2]
and f(w) = [dp(w)/2] + 1 for w € V(B)\{u,v}. Then B is f-choosable.
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1. Introduction

Let G = (V, E) be a simple graph. A list assignment L of G is a mapping
that assigns to each v € V a set L(v) of colors. An L-coloring of G is a
proper coloring c¢ of the vertices such that ¢(v) € L(v) for each v € V. Let
N denote the set of positive integers, and let f : V — N be a function. G
is f-choosable if, for any list assignment L of G such that |L(v)| > f(v)
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for each v € V, G has an L-coloring. For k € N, G is k-choosable if G is
f-choosable when f(v) =k foreachv e V.

Let B be a bipartite graph. Alon and Tarsi [1] showed that B is
([A(B)/2] +1)-choosable, where A(B) is the maximum degree of B. Wang
and Huang [2] proved the following variant of this result, in which an odd
vertez is a vertex of odd degree, and dp(v) is the degree of v in B.

Theorem 1. Suppose that u € B is odd and let f : V(B) — N be such
that f(u) = [dp(u)/2] and f(v) = [dB(v)/2] + 1 for v € V(B)\u. Then
B is f-choosable.

We prove two results as follows. (1) Suppose that u € V(B) is a vertex
such that Np(u) contains at least |Ng(u)| — 1 odd vertices, where Np(u)
is the set of the vertices in B which are adjacent to u. Let f: V(B) = N
be such that f(v) = 1 and f(v) = [dp(v)/2] + 1 for v € V(B)\u. Then
B is f-choosable. (2) Suppose that u € V(B) is a vertex such that every
vertex in Np(u) is odd, and v € V(B) is an odd vertex that is not adjacent
to u. Let f : V(B) — N be such that f(u) =1 and f(v) = [dp(v)/2] and
f(w) = [dp(w)/2] + 1 for w € V(B)\{u,v}. Then B is f-choosable.

2. The main results

Let Gy,...,Gm be disjoint graphs. For each i € {1,...,m}, let u; and v;
be two different vertices of G;. We denote by Tyy[G1 . . . Gm| the new graph
obtained by identifying all the vertices u; and all the vertices v; into new
vertices u* and v*, respectively, as in Fig. 1.

u* v v*
Fig. 1

If H is a subgraph of a graph G, and L is a list assignment of G, let
L|H denote L restricted to the vertices of H.
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Lemma 2. Let u; and v; be two distinct vertices of graph G; and sup-
pose that f; : V(G,-) — N is such that fi(u;) =1 (1 < i £ m). Let
T, = T..[G1...Gn] and suppose that fr : V(T%) — N is such that
fT(u )=1and fT(v )= Z:K,(m(f,(v,) 1)+1 and fr(v) = f;(v) forv e
V(Gi)\{u*,v"}. Then T}, is fr-choosable if G; is f;-choosable (1 < i < m).

Proof Suppose that L is a list assignment of T}, satisfying |L(v)| = fr(v)
(v € V(T,)). Let T; be a set of colors.¢; € L(v*) such that G; has
an L|G;-coloring, in which v* is colored with ¢; (1 < ¢ < m —1). Let
S; = L(v*\T;. Then |S;| £ fi(v;) — 1 since G; is f;-choosable. Define a
hst assignment L., of Gp, by setting Lm(vm) = L(vm)\ Uigicm—-1 Si and

Ln(v) = L(v) for v € V(Gm)\Um. Since |Lm(vm)| > fm(vm) and Gy, is
fm-choosable, G, has an L,-coloring ¢n,. Since v,, = v* is given a color
¢m(vm) that is not in any S;, and hence isinevery T; (1<i < m—1), it
follows from the definition of T; that this coloring can be extended to an
L-coloring of T}, o

Theorem 3. Suppose u is a vertez of a bipartite graph B such that Ng(u)
contains at least |Np(u)|—1 odd vertices, and let f : V(B) — N be such that
f(u) =1 and f(v) = [dg(v)/2]+1 forv € V(B)\u. Then B is f-choosable.

Proof Let m = |Np(u)|—1 and let vy,..., v, be distinct odd vertices in
Np(u). Let Bp = B\{uv;]1 <i <m}. For 1 <i < m let G; be a copy of
K5 with vertices T; and 7;, and let B; be the graph obtained from G; and
B;_, by identifying %; with u and 7; with v;, respectively. It is clear that
B = B,,,. Next we use induction to prove that B is f-choosable.

Let g; : V(G;) — N be such that g;(Z;) = 1 and g(%;) = 2; then G; is
gi-choosable (1 < i < m). Let f; : V(B;) — N be such that f;(z) = 1 and
fi(v) = [dB,(v)/2] + 1 for v € V(B;)\u (0 < i < m). By Theorem 1, By
is fo-choosable. Since dp,_, (v;) is even, [dp,(v;)/2] = [dp,_, (v:)/2] + 1
(1 £i < m). It follows from Lemma 2 that if B;_, is f;_;-choosable then
B; is fi-choosable. Since f,, = f, It follows that B is f-choosable. a

Lemma 4. Let u be a vertez of graph G and suppose that f : V(G) - N
18 a function such that f(u) = 1. Suppose that g : V(G)\u — N is the
function such that g(v) = f(v)—1 ifv € Ng(u) and g(v) = f(v) otherwise.
Then G is f-choosable if and only if G\u is g-choosable.

Proof “If” : Let L be a list assignment of G such that |L(v)| = f(v)
for each v € V(G). Color u with the color c(u) € L(u) and define a list
assignment L’ of G\u by setting L'(v) = L(v)\c(u) if v € Ng(u) and
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L'(v) = L(v) otherwise. Then |L'(v)| > g(v) for each v € V(G)\u, and so
G\u has an L'-coloring since G\u is g-choosable. Thus G has an L-coloring.

“Only If” : Suppose that G\u is not g-choosable. Then there is a
list assignment L’ of G\u with |L'(v)| = g(v) for each v € V(G)\u such
that G\u has no L'-coloring. Choose ¢ & Uyengu)L/'(v) and define a
list assignment L of G by setting L(u) = {c} and L(v) = L'(v) U {c}
for v € Ng(u) and L(v) = L'(v) for v € V(G)\(Ng(v) U {u}). Then
|L(v)| = f(v) for each v € V(G). Clearly G has no L-coloring. n]

Let G be a graph, and let f, g, : V(G) — N be such that g,(u) =
f(u) =1 and g, (v) = f(v) for v € V(G)\u. Suppose that G is f-choosable.
Then G is f-critical at u € V(G) if G is not g,-choosable.

Lemma 5. Let u; and v; be two nonadjacent vertices of graph G;, and f;,
T2 and fr be as in Lemma 2 (1 < ¢ < m). Suppose that G; is f;-critical at
v; (1 £i < m—1). Then, for any vertex v € V(Gn) that is not adjacent
t0 Um, Gm 15 fm-critical at T if and only if Ty, is fr-critical at v.

Proof Since fm(um) = fr(u*) = 1, it is clear that G, is fm-critical at
U, and T is fr-critical at u* = u,. Thus we may assume that v # upm.

“If” : We now prove that T is not fr-critical at ¥ if G, is not
fm-critical at 7. Let L be a list assignment of T}, such that |L(7)| =
fr(®) — 1 and |L(v)] = fr(v) for each v € V(T};,)\v. Then we can obtain
that T, has an L-coloring as in the proof of Lemma 2.

“Only if” : Since G; is f;-choosable (1 < i < m), T}, is fr-choosable
by Lemma 2. By Lemma 4, for each i for which G; is fi-critical at v;, there
exists a list assignment L; of G;\u; such that

|Lg(v)| = fi(v) -1 ifve N(;‘ (u,) U {’U,'},
|Li(v)] = fi(v)  if v € V(Gi\ui)\(Ng, (ui) U {v:}), (1)
Gi\u; has no L;-coloring.

Suppose first that ¥ = v,,. Then G; is fi-critical at v; for 1 <4 < m, and
list assignment L; satisfying (1) exist for all 7 and can be chosen so that
Li(v)NLj(v;) =0 if i # j (4,5 € {1,2,...,m}). Let c be a color not used
by any L; and define a list assignment L of T}, by setting

L(u*) = {c}, L(v*) = VigigmLi(vi),
L(v) = Ly(v) U {c} ifv € Ng,(ui), (2)
L(v) = Li(v) if v € V(Gi)\(Ng,(u:) U {u*,v"}).
for each i € {1,2,...,m}, so that |L(v)| = fr(v) for each vertex v € T;;,\¥
and L(?) = fr(v) — 1. Clearly T, has no L-coloring. This shows that T,
is fr-critical at 7(= vy, = v*).
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Suppose now that ¥ € V(Gm)\{tm,vm}. Since G; is fi-critical at v; for
1 <i <m -1, there exists a list assignment L; of G;\u; satisfying (1) for
all such i. And since G, is f-critical at ¥, there exists a list assignment
L, of Gp\un, satisfying (1) when 1 is replaced by m and both occurrences
of v; in (1) are replaced by ¥. The list assignment L; can be chosen so that
Li(v)NL(v;) =0ifi # 7 (i,7 € {1,2,...,m}). As before, let ¢ be a color
not used by any L; and define a list assignment L of T by (2). Clearly
T, has no L-coloring, and so T}, is fr-critical at v. a

Lemma 6. Letu be a verter of a bipartite graph B such that every neighbor
of u is odd and suppose that f : V(B) — N is the function such that
f(u) =1 and f(w) = [dp(w)/2] +1 for w € V(B)\u. Ifv € V(B) is not
adjacent to v and B is f-critical at v, then dg(v) is even.

Proof Let T} = T,,[BB] and suppose that fr : V(Ty) — N is the
function such that fr(u*) =1 and fr(v*) = 2f(v) — 1 and fr(w) = f(w)
for w € V(T3)\{u*,v*}. By Lemma 5, T3 is fr-critical at v*. This implies
that T3 is not g-choosable, where g : V(T33) — N is the function such that
g(v*) = 2(f(v) = 1) and g(v) = f(v) for v # v*. If dg(v) is odd then
9(v*) = 2(f(v) — 1) = 2[dg(v)/2] = dp(v) + 1 = dr; (v*)/2 + 1. Noting
that T3 is still a bipartite graph, we can obtain that T is g-choosable by
Theorem 3. This contradiction shows that dg(v) is even. o

As one consequence of Lemma 6, we have
Theorem 7. Suppose that u and v be two nonadjacent vertices of a bi-
partite graph B such that every neighbor of u is odd and so is v. Let

f:V(B) = N be the function such that f(u) =1 and f(v) = [dp(v)/2]
and f(w) = [dp(w)/2] + 1 for w € V(B)\{u,v}. Then B is f-choosable.
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