Note on the choosability of bipartite graphs *

Guoping Wang ^{1,2}, Qiongxiang Huang ³

¹Department of Mathematics, Xinjiang Normal University,
Urumqi, Xinjiang 830000, P.R.China

²Department of Mathematics, Jiangsu Teachers University of Technology,
Changzhou, Jiangsu 213001, P.R.China

³The College of Mathematics and Systems Sciences,
Xinjiang University, Urumqi, Xinjiang 830046, P.R.China

Abstract. Let B be a bipartite graph. We obtain two new results as follows. (1) Suppose that $u \in V(B)$ is a vertex such that $N_B(u)$ contains at least $|N_B(u)| - 1$ odd vertices. Let $f: V(B) \to \mathbb{N}$ be the function such that f(u) = 1 and $f(v) = \lceil d_B(v)/2 \rceil + 1$ for $v \in V(B) \setminus u$. Then B is f-choosable. (2) Suppose that $u \in V(B)$ is a vertex such that every vertex in $N_B(u)$ is odd, and $v \in V(B)$ is an odd vertex that is not adjacent to u. Let $f: V(B) \to \mathbb{N}$ be the function such that f(u) = 1 and $f(v) = \lceil d_B(v)/2 \rceil$ and $f(w) = \lceil d_B(w)/2 \rceil + 1$ for $w \in V(B) \setminus \{u, v\}$. Then B is f-choosable.

Key words: *L*-coloring, *f*-critical, *f*-choosable

MR classification: 05C15

1. Introduction

Let G=(V,E) be a simple graph. A list assignment L of G is a mapping that assigns to each $v\in V$ a set L(v) of colors. An L-coloring of G is a proper coloring c of the vertices such that $c(v)\in L(v)$ for each $v\in V$. Let $\mathbb N$ denote the set of positive integers, and let $f:V\to \mathbb N$ be a function. G is f-choosable if, for any list assignment L of G such that $|L(v)|\geq f(v)$

^{*}Research is supported by science fund of Xinjiang normal university. Email: xj.wgp@163.com

for each $v \in V$, G has an L-coloring. For $k \in \mathbb{N}$, G is k-choosable if G is f-choosable when f(v) = k for each $v \in V$.

Let B be a bipartite graph. Alon and Tarsi [1] showed that B is $(\lceil \Delta(B)/2 \rceil + 1)$ -choosable, where $\Delta(B)$ is the maximum degree of B. Wang and Huang [2] proved the following variant of this result, in which an *odd* vertex is a vertex of odd degree, and $d_B(v)$ is the degree of v in B.

Theorem 1. Suppose that $u \in B$ is odd and let $f : V(B) \to \mathbb{N}$ be such that $f(u) = \lceil d_B(u)/2 \rceil$ and $f(v) = \lceil d_B(v)/2 \rceil + 1$ for $v \in V(B) \setminus u$. Then B is f-choosable.

We prove two results as follows. (1) Suppose that $u \in V(B)$ is a vertex such that $N_B(u)$ contains at least $|N_B(u)|-1$ odd vertices, where $N_B(u)$ is the set of the vertices in B which are adjacent to u. Let $f:V(B)\to \mathbb{N}$ be such that f(u)=1 and $f(v)=\lceil d_B(v)/2\rceil+1$ for $v\in V(B)\setminus u$. Then B is f-choosable. (2) Suppose that $u\in V(B)$ is a vertex such that every vertex in $N_B(u)$ is odd, and $v\in V(B)$ is an odd vertex that is not adjacent to u. Let $f:V(B)\to \mathbb{N}$ be such that f(u)=1 and $f(v)=\lceil d_B(v)/2\rceil$ and $f(w)=\lceil d_B(w)/2\rceil+1$ for $w\in V(B)\setminus \{u,v\}$. Then B is f-choosable.

2. The main results

Let G_1, \ldots, G_m be disjoint graphs. For each $i \in \{1, \ldots, m\}$, let u_i and v_i be two different vertices of G_i . We denote by $T_{uv}[G_1 \ldots G_m]$ the new graph obtained by identifying all the vertices u_i and all the vertices v_i into new vertices u^* and v^* , respectively, as in Fig. 1.

Fig. 1

If H is a subgraph of a graph G, and L is a list assignment of G, let L|H denote L restricted to the vertices of H.

Lemma 2. Let u_i and v_i be two distinct vertices of graph G_i and suppose that $f_i: V(G_i) \to \mathbb{N}$ is such that $f_i(u_i) = 1$ $(1 \le i \le m)$. Let $T_m^* = T_{uv}[G_1 \dots G_m]$ and suppose that $f_T: V(T_m^*) \to \mathbb{N}$ is such that $f_T(u^*) = 1$ and $f_T(v^*) = \sum_{1 \le i \le m} (f_i(v_i) - 1) + 1$ and $f_T(v) = f_i(v)$ for $v \in V(G_i) \setminus \{u^*, v^*\}$. Then T_m^* is f_T -choosable if G_i is f_i -choosable $(1 \le i \le m)$.

Proof Suppose that L is a list assignment of T_m^* satisfying $|L(v)| = f_T(v)$ $(v \in V(T_m^*))$. Let T_i be a set of colors $c_i \in L(v^*)$ such that G_i has an $L|G_i$ -coloring, in which v^* is colored with c_i $(1 \le i \le m-1)$. Let $S_i = L(v^*) \setminus T_i$. Then $|S_i| \le f_i(v_i) - 1$ since G_i is f_i -choosable. Define a list assignment L_m of G_m by setting $L_m(v_m) = L(v_m) \setminus \bigcup_{1 \le i \le m-1} S_i$ and $L_m(v) = L(v)$ for $v \in V(G_m) \setminus v_m$. Since $|L_m(v_m)| \ge f_m(v_m)$ and G_m is f_m -choosable, G_m has an L_m -coloring c_m . Since $v_m = v^*$ is given a color $c_m(v_m)$ that is not in any S_i , and hence is in every T_i $(1 \le i \le m-1)$, it follows from the definition of T_i that this coloring can be extended to an L-coloring of T_m^* .

Theorem 3. Suppose u is a vertex of a bipartite graph B such that $N_B(u)$ contains at least $|N_B(u)|-1$ odd vertices, and let $f:V(B)\to\mathbb{N}$ be such that f(u)=1 and $f(v)=\lceil d_B(v)/2\rceil+1$ for $v\in V(B)\setminus u$. Then B is f-choosable.

Proof Let $m = |N_B(u)| - 1$ and let v_1, \ldots, v_m be distinct odd vertices in $N_B(u)$. Let $B_0 = B \setminus \{uv_i | 1 \le i \le m\}$. For $1 \le i \le m$ let G_i be a copy of K_2 with vertices \overline{u}_i and \overline{v}_i , and let B_i be the graph obtained from G_i and B_{i-1} by identifying \overline{u}_i with u and \overline{v}_i with v_i , respectively. It is clear that $B = B_m$. Next we use induction to prove that B is f-choosable.

Let $g_i:V(G_i)\to\mathbb{N}$ be such that $g_i(\overline{u}_i)=1$ and $g(\overline{v}_i)=2$; then G_i is g_i -choosable $(1\leq i\leq m)$. Let $f_i:V(B_i)\to\mathbb{N}$ be such that $f_i(u)=1$ and $f_i(v)=\lceil d_{B_i}(v)/2\rceil+1$ for $v\in V(B_i)\setminus u$ $(0\leq i\leq m)$. By Theorem 1, B_0 is f_0 -choosable. Since $d_{B_{i-1}}(v_i)$ is even, $\lceil d_{B_i}(v_i)/2\rceil=\lceil d_{B_{i-1}}(v_i)/2\rceil+1$ $(1\leq i\leq m)$. It follows from Lemma 2 that if B_{i-1} is f_{i-1} -choosable then B_i is f_i -choosable. Since $f_m=f$, It follows that B is f-choosable. \square

Lemma 4. Let u be a vertex of graph G and suppose that $f:V(G)\to \mathbb{N}$ is a function such that f(u)=1. Suppose that $g:V(G)\setminus u\to \mathbb{N}$ is the function such that g(v)=f(v)-1 if $v\in N_G(u)$ and g(v)=f(v) otherwise. Then G is f-choosable if and only if $G\setminus u$ is g-choosable.

Proof "If": Let L be a list assignment of G such that |L(v)| = f(v) for each $v \in V(G)$. Color u with the color $c(u) \in L(u)$ and define a list assignment L' of $G\setminus u$ by setting $L'(v) = L(v)\setminus c(u)$ if $v \in N_G(u)$ and

L'(v) = L(v) otherwise. Then $|L'(v)| \ge g(v)$ for each $v \in V(G) \setminus u$, and so $G \setminus u$ has an L'-coloring since $G \setminus u$ is g-choosable. Thus G has an L-coloring.

"Only If": Suppose that $G\backslash u$ is not g-choosable. Then there is a list assignment L' of $G\backslash u$ with |L'(v)|=g(v) for each $v\in V(G)\backslash u$ such that $G\backslash u$ has no L'-coloring. Choose $c\not\in \cup_{v\in N_G(u)}L'(v)$ and define a list assignment L of G by setting $L(u)=\{c\}$ and $L(v)=L'(v)\cup \{c\}$ for $v\in N_G(u)$ and L(v)=L'(v) for $v\in V(G)\backslash (N_G(u)\cup \{u\})$. Then |L(v)|=f(v) for each $v\in V(G)$. Clearly G has no L-coloring. \square

Let G be a graph, and let $f, g_u : V(G) \to \mathbb{N}$ be such that $g_u(u) = f(u) - 1$ and $g_u(v) = f(v)$ for $v \in V(G) \setminus u$. Suppose that G is f-choosable. Then G is f-critical at $u \in V(G)$ if G is not g_u -choosable.

Lemma 5. Let u_i and v_i be two nonadjacent vertices of graph G_i , and f_i , T_m^* and f_T be as in Lemma 2 $(1 \le i \le m)$. Suppose that G_i is f_i -critical at v_i $(1 \le i \le m-1)$. Then, for any vertex $\tilde{v} \in V(G_m)$ that is not adjacent to u_m , G_m is f_m -critical at \tilde{v} if and only if T_m^* is f_T -critical at \tilde{v} .

Proof Since $f_m(u_m) = f_T(u^*) = 1$, it is clear that G_m is f_m -critical at u_m and T_m^* is f_T -critical at $u^* = u_m$. Thus we may assume that $\tilde{v} \neq u_m$.

"If": We now prove that T_m^* is not f_T -critical at \widetilde{v} if G_m is not f_m -critical at \widetilde{v} . Let L be a list assignment of T_m^* such that $|L(\widetilde{v})| = f_T(\widetilde{v}) - 1$ and $|L(v)| = f_T(v)$ for each $v \in V(T_m^*) \setminus \widetilde{v}$. Then we can obtain that T_m^* has an L-coloring as in the proof of Lemma 2.

"Only if": Since G_i is f_i -choosable $(1 \le i \le m)$, T_m^* is f_T -choosable by Lemma 2. By Lemma 4, for each i for which G_i is f_i -critical at v_i , there exists a list assignment L_i of $G_i \setminus u_i$ such that

$$\begin{aligned} |L_i(v)| &= f_i(v) - 1 & \text{if } v \in N_{G_i}(u_i) \cup \{v_i\}, \\ |L_i(v)| &= f_i(v) & \text{if } v \in V(G_i \setminus u_i) \setminus (N_{G_i}(u_i) \cup \{v_i\}), \\ G_i \setminus u_i \text{ has no } L_i\text{-coloring.} \end{aligned}$$
 (1)

Suppose first that $\widetilde{v}=v_m$. Then G_i is f_i -critical at v_i for $1 \leq i \leq m$, and list assignment L_i satisfying (1) exist for all i and can be chosen so that $L_i(v_i) \cap L_j(v_j) = \emptyset$ if $i \neq j$ $(i, j \in \{1, 2, ..., m\})$. Let c be a color not used by any L_i and define a list assignment L of T_m^* by setting

$$L(u^*) = \{c\}, \ L(v^*) = \bigcup_{1 \le i \le m} L_i(v_i), L(v) = L_i(v) \cup \{c\} \quad \text{if } v \in N_{G_i}(u_i), L(v) = L_i(v) \quad \text{if } v \in V(G_i) \setminus (N_{G_i}(u_i) \cup \{u^*, v^*\}).$$
 (2)

for each $i \in \{1, 2, ..., m\}$, so that $|L(v)| = f_T(v)$ for each vertex $v \in T_m^* \setminus \widetilde{v}$ and $L(\widetilde{v}) = f_T(\widetilde{v}) - 1$. Clearly T_m^* has no L-coloring. This shows that T_m^* is f_T -critical at $\widetilde{v}(=v_m=v^*)$.

Suppose now that $\widetilde{v} \in V(G_m) \setminus \{u_m, v_m\}$. Since G_i is f_i -critical at v_i for $1 \leq i \leq m-1$, there exists a list assignment L_i of $G_i \setminus u_i$ satisfying (1) for all such i. And since G_m is f_m -critical at \widetilde{v} , there exists a list assignment L_m of $G_m \setminus u_m$ satisfying (1) when i is replaced by m and both occurrences of v_i in (1) are replaced by \widetilde{v} . The list assignment L_i can be chosen so that $L_i(v_i) \cap L_j(v_j) = \emptyset$ if $i \neq j$ $(i, j \in \{1, 2, \ldots, m\})$. As before, let c be a color not used by any L_i and define a list assignment L of T_m^* by (2). Clearly T_m^* has no L-coloring, and so T_m^* is f_T -critical at \widetilde{v} .

Lemma 6. Let u be a vertex of a bipartite graph B such that every neighbor of u is odd and suppose that $f: V(B) \to \mathbb{N}$ is the function such that f(u) = 1 and $f(w) = \lceil d_B(w)/2 \rceil + 1$ for $w \in V(B) \setminus u$. If $v \in V(B)$ is not adjacent to u and B is f-critical at v, then $d_B(v)$ is even.

Proof Let $T_2^* = T_{uv}[BB]$ and suppose that $f_T : V(T_2^*) \to \mathbb{N}$ is the function such that $f_T(u^*) = 1$ and $f_T(v^*) = 2f(v) - 1$ and $f_T(w) = f(w)$ for $w \in V(T_2^*) \setminus \{u^*, v^*\}$. By Lemma 5, T_2^* is f_T -critical at v^* . This implies that T_2^* is not g-choosable, where $g: V(T_2^*) \to \mathbb{N}$ is the function such that $g(v^*) = 2(f(v) - 1)$ and g(v) = f(v) for $v \neq v^*$. If $d_B(v)$ is odd then $g(v^*) = 2(f(v) - 1) = 2[d_B(v)/2] = d_B(v) + 1 = d_{T_2^*}(v^*)/2 + 1$. Noting that T_2^* is still a bipartite graph, we can obtain that T_2^* is g-choosable by Theorem 3. This contradiction shows that $d_B(v)$ is even.

As one consequence of Lemma 6, we have

Theorem 7. Suppose that u and v be two nonadjacent vertices of a bipartite graph B such that every neighbor of u is odd and so is v. Let $f: V(B) \to \mathbb{N}$ be the function such that f(u) = 1 and $f(v) = \lceil d_B(v)/2 \rceil$ and $f(w) = \lceil d_B(w)/2 \rceil + 1$ for $w \in V(B) \setminus \{u, v\}$. Then B is f-choosable.

3. Acknowledgment

We thank the referee for help in improving the presentation of the paper.

References

- [1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992), 125-134.
- [2] G. Wang and Q. Huang, The choosability of bipartite graphs, Ars Combinatoria 90 (2009), 289-293.