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Abstract

A graph is said to be determined by its adjacency spectrum (or to
be a DS graph, for short) if there is no other non-isomorphic graph
with the same adjacency spectrum. Although all connected graphs
of index less than 2 are known to be determined by their adjacency
spectra, the classification of DS graphs of index less than 2 is not
complete yet. The purpose of this paper is to characterize all DS
graphs of index less than 2 with no Z, as a component.
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Let G be an undirected finite simple graph with n vertices and the adja-
cency matrix A(G). Since A(G) is a real symmetric matrix, its eigenvalues
are real numbers. So we can assume that A\; > Ag > -+ > A, are the
adjacency eigenvalues of G. The multiset of eigenvalues of A(G) is called
the adjacency spectrum (or A-spectrum, for short) of G. The maximum
eigenvalue of A(G) is called the indez of G. Two graphs are said to be
cospectral with respect to adjacency matriz (or A-cospectral, for short) if
they have the same A-spectra. A graph is said to be determined (DS for
short) by its A-spectrum if there is no other non-isomorphic graph with
the same A-spectrum. There have been some attempts to characterize
graphs having an index at most a given number. In (7] all graphs of in-
dex at most 2 are identified. Subsequently, graphs of index not exceeding
v/2 + /5 are determined in (1, 2]. Most of the connected graphs of index
at most 2 are known to be DS with respect to the adjacency matrix (see
[6, 9, 10]). Moreover, in [4], all connected DS graphs of index at most
V2 + /5 are identified. Although the classification of DS graphs of index
less than 2 is not complete, some important results are known. All con-
nected graphs of index less than 2 are known to be determined by their
A-spectra [4]. In [9], it has been shown that the disjoint union of k disjoint
paths P,, + P, + -+ + Py, is determined by its A-spectrum as well as the

its L-spectrum, where n,7g2,...,nx are integers at least 2. Moreover, in
[6], Shen and others showed that Zn, + Zn, + - + Zn, is determined by
its A-spectrum, where ny,ng,...,nx are integers at least 2. Recently, we

characterized all DS graphs of index less than 2 with no path as a com-
ponent [5]. For more information about DS graphs we refer the interested
reader to [8, 9). In this paper, we consider graphs of index less than 2, and
among them we identify those DS graphs which does not have any Z, as

a component.

2. Graphs of index less than 2

In [7], all connected graphs of index less than 2 are identified. Moreover,
all of them are known to be determined by their A-spectra [4].
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Fig. 1
Notation. The path and cycle with n vertices are denoted by P, and
Ch, respectively. For a,b,¢ > 1, we denote the graph shown in Fig. 1, by
T(a,b,c). In particular, Z,(n > 2) stands for T(1,n—1,1). We denote the
graphs T(1,2,2), T(1,2,3) and T'(1,2,4) by T; for i = 1,2, 3, respectively.

Theorem 1.[7] The list of all connected graphs of indez less than 2 in-
cludes precisely the following graphs (see Fig. 1):

i) PryZp(n2>2),

i) T; fori=1,2,3.

Let G be a graph of index less than 2. Then G can be represented in a

unique way as a linear combination of the form

Py+Py+  +Py+Zj,+ 2+ + Zj, +t1Ty + t2T + taTs.

The A-spectrum of the union of two graphs is obviously the union of
their spectra (having in view the multiplicities of the eigenvalues). The
expressions Gy +Gj and Gy +G, will denote the union of the graphs G; and
G2 and the union of their adjacency spectra, respectively. The expressions
kG and kG denote the union of k copies of G and G, respectively. If G; C
éz, the expression G2 — G denote the difference of systems of numbers of
él from éz.

The A-spectra of graphs of index less than 2 are known (3], and we have:

jm

Pn={2005n+1

l7=12,...,n},
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(25 + )=

= {2¢0s ~——-— 1)

[7=0,1,2,...,n} + {0},
={2cos—|j=1,4,5,7,8,11},
Tz—-{2cos |]—157911 13,17},

T3—{2cos |_7—1711 13,17,19,23,29}.

Lemma 1./9]. For n x n symmetric matrices A and B, the following are
equivalent:

i) A and B are cospectral,

ii) tr(A!) = tr(B!) fori=1,...,n

If A is the adjacency matrix of a graph, then tr(A') gives the total number
of closed walks of length i. So by the above lemma, two A-cospectral graphs
have the same number of closed walks of a given length i. In particular,
they have the same number of edges and triangles. The following lemma

gives some A-cospectral graphs of index less than 2.

Lemma 2./3] The following can be obtained from the above quoted facts:
0) Zn+ Po=Ponga + B,

)T +Ps+Ps= P +P+ Py,

iii) T+ Ps + Py = Py + P + P,

iv) T3+P14+}59+p5 =}329+P4+}52+151,

Theorem 2.[3] The A-spectrum of any graph of indez less than 2 can be
represented in o unique way as o linear combination of the form

(51151 + 52152 +---+ 5,1,,15",.
The number m is bounded by a function of the number of vertices.
Lemma 3.9 Let G = P, + P, + -+ + P, be a graph of indez less than

sand let 1 < i3 < ig < +++ £ ir. Then G can be determined by its

Aspectrum.
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2. Main results

In this section, we give some A-cospectral graphs. The results will
be used to characterize DS graphs of index less than 2 with no Z, as a

component.

Lemma 4. Let a be a non-negative integer. We have:
) Hy=PB+Pn+To=P+ P+ Zs,

i) Hy=Po+Pp+Pu+Ta=P+ P+ B+ Zs,
i) H3=Py+ Py + Py + Ts = By + Bs + P + T,
iv) I:?4=T2+155 =Zs+132,

v) Iis =T1+P3=Zs+p2,

Vi) He=T3+ B+ B =Zuu+ B+ B,

vii) Hi=B+P+T =P+ Pi1 + 2,

viii) Hg = Ps + Pla + Pig + Ts = Po + Py + Poo + 2o,
ix) Ifa>2, then Hy= P, + Pyayy = B, + Z,.

Proof. Using Lemma 2, we can represent each side of these equations as
a linear combination of the form &, P, + 62152 ++++ 48Py It is clear that
the two sides of each equation have the same representation. a

Let G = IJil + H: +--- 4 }Di,_ +t1T1 +t2T2 +t3T3 be a graph of index
less than 2. Suppose that G has p; components of type P;. Then for some
non-negative integer r, G can be represented as

G =) piPi+t:,Ty + toTp + tTs.

i=1
Let H be A-cospectral to G. Since G has index less than 2, H can be
represented in a unique way as a linear combination of the form

H=Py +P,+ - +Pj,+ 2, +Zey+ -+ Z, + 11Ty + 12T + 13T,

Again, suppose that H has p; components of type P; and ; components of
type Z;. Then for some non-negative integers 7 and [, H can be represented
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7 I
H=Y pP+) uZi+hT +&Tp + &Ts.
i=1 i=2
Since G and H are A-cospectral and bipartite graphs of index less than 2,
by Theorem 2, their spectra can be represented in a unique way as a linear

combination of the form
1P +82P+ - + 6 P (1)

By Lemma 1, H and G have the same numbers of vertices and edges. Since
their components are trees, they have the same number of components and

we have:

r 7 ]
Zpi+t1+t2+t3=2ﬁi+zfi+f1+t2+t_3- (2)
i=1 i=1 i=2

Using Theorem 2, to represent G and H in terms of linear combinations of

P;’s, we can calculate §; for any 1.

bs=ps—ti—to—ta=Ps+ 25— —th—t2—1s (3)
I
Si=p+ti+ttts=p+Yy Z+h+h+is (4
=2

By the relations (2) and (4) we have }7_,p; = ZL: Di.

bo=prt+tit+io+ta=Pp—Z+ih +i2+1s (5)
83 =p3 —t1 =Pa—Z3 — 1. (6)

84 =pa+its=pPs— 2+ (7)
Su=pn+ti=pu+2z-n+t. (8)

88 = ps —t2 = Ps — %3 — Lo 9)

614 =p14 — t3 = Pra — 214 — t3. (10)

829 = P2g + t3 = Pog — Z2o + Z14 + B3 (11)

89 = po — t3 = Po + Za — Zg — 13 (12)

617 =p17 +ta =Pir + 28 — 17 + t2. (13)

07 =pr=pPr+2Zs—Z7. (14)
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Lemma 5. Let G =P, + P, +---+ P, + 1Ty + t2T5 + 13T be a graph of
index less than 2. If G has Py as a component, then G can be determined
by its spectrum if and only if G does not have any components where the

specira of their unions is Hy .

Proof. Suppose that G has p; components of type P;. Then for some
non-negative integer r, G can be represented as

-
G =) piPi+ tiTy + t2T2 + 1373,
i=1
It is clear that if G has some components where the spectra of their unions
is Ho, then G has a A-cospectral mate and so it can not be determined by
its A-spectrum. Now suppose that G does not have any components where
the spectra of their unions is Hy. We show that if G has P, as a component,
then G is determined by its A-spectrum. Let H be A-cospectral to G. Since
G has index less than 2, for some non-negative integers 7 and I, H can be

represented as

7 I
H= Zﬁzpt + ZE,‘Z,' +4T) + 6T + 1aT5.
i=1 i=2
Without loss of generality we can suppose that at most one of the ¢; and
t; (p: and p;) is nonzero. So we can suppose that p; > 0 and 5, = 0. Since
G dose not have any components where the spectrum of their unions is
ﬁg, for any n > 1 we have Pian+1) = 0. Let § = {1,2,4,5,8,14,} and let
z € N — S be a natural number. Then for n > 1 we have:

O(arz4an—1) = P2nzt2n—1) = Panzian—1)FZ(2n-1p42n-1_1)—Z(2nzq2n-1) = 0.

Therefore f(anzqon_1) = Z@angon—1) — Z(gn-1z42n-1_1) > 0. It means that
the sequence {Z(2nz42n_1)} is an increasing sequence. If z; > 0, then
Z(gnz42n-1) > 0 for any n > 0. But this contradicts to the fact that G is a
finite graph. So Z; = 0. Since pg = z3 = 0, then by (6), p3 = &; — ¢; > 0.
Again, since p;; = 2z;; = 0, by (8) we have §y; = t; — I; — 35 > 0.

So p11 = P3 =t =1 = 2 = 0. Since pg = Zy = 0 then by (12),
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Pg = ta3 — Z3 — t3 > 0 . Again, we have pyg = Z29 = 0. So by (11),
Poo =tz —f3— 214 2 0. So Pog = Po = t3 = &3 = %3 = %14 = 0. Since
P17 = %7 = 0, then by (13), 517 = t2 — {2 — Z3 and we can suppose that
t; = 0. Again, since ps = 0, by (3) we have fis = 25 — Zo — to > 0 and
Sofs =Pa=tlya=%2=2=2Zg=P7=pg =0. Since for 1 < i < 3,
t; =t =0 and for n > 1, pn41) = 0, then for any natural number y we

have:
Oany+an—1) = P(any+2n—1) = D@ny+an—1)HZ@n-1y42n-1-1)~Z(2ny+2n-1) = 0.

Hence P(any42n-1) = Zanys2n-1) — Z@n-1y42n-1-1) = 0. Again, the se-
quence {Z(any4+2n—1)} is an increasing sequence. If z, > 0, then Ziany2n_1) >
0 for any n > 0. Which contradicts to this fact that G is a finite graph. So
%, = 0 and so by (4), p1 = p1, which is not possible. D

Theorem 3. Let G = YI_, piPi + t:T1 + t2T> + taT3 be a graph of indez
less than 2. Then G can be determined by its spectrum if and only if G
does not have any components where the spectrum of their unions is H;

(i=1,...,9).

Proof. It is clear that if G has some components where the spectrum of
their unions is H; (i = 1,...,9), then G has a A-cospectral mate and so
it can not be determined by its A-spectrum. Now suppose that G does
not have any components where the spectrum of their unions is H; for
i=1,...,9. We show that G is determined by its A-spectrum. Let H =
S BP+ ZLQ %,Z; + 11Ty + £, T +13T3 be A-cospectral to G. Without
loss of generality we can suppose that at most one of the ¢; and #; (p; and
;) is nonzero. Since G does not have any components where the spectrum
of their unions is Hy, if py > 0, then by Lemma 5, G can be determined by
its spectrum. So we can suppose that p; = 0. By the relations (4) and (5),
we have pg = P2 — P1 — 22 —E£=2‘Ei‘ Sopy =0, p2 =P1 +22+22i and
P2 > Zs. Hence by (3), (4), ps = Ps and we can suppose that ps = 0 and
ps = P2 — Z5. We have the following cases:

i) Let t; > 0 and #; = 0. Since G does not have any components where
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the spectrum of their unions is Hs, p3 = 0 and so by (6), p3 = 73 — ¢;.
If t2 > 0 and #; = 0, then since G does not have any components where
the spectrum of their unions is Hy, ps = 0 and so §» = z5. Therefore, for
i# 5, )y = Z; = 0 and p3 = —t; < 0, which is impossible. So t; = 0 and
t2 > 0. If t3 = 0, then by (4), we have t; = 5; + Zf=2 Z+ 1ty + 13 > z3.
On the other hand, fi3 = 3 — ¢, 2 0. So t; = f; + Y0, 2 + o + 13 =
Z3. Hence for i # 3, p3 = p1 = % =t = {3 = 0, t; = Z3. By (8),
pin = 0 and 5;; = t;. In a similar way by (3), (5) and (14) we have
ty, =ps = pr = P2 = P11 = z3 > 0. So G has some components where
the spectrum of their unions is Hy. This is impossible. Hence ¢t3 > 0 and
t3 = 0. By (7), p4+ = 0 and p; = t3 + Z;. Since G dose not have any
components where the spectrum of their unions is Hg, we have pspg = 0.
If ps = 0, then by (3) and (4) we have p; + js + Z — %5 + 2£=2 zZ =0.
Therefore, for ¢ # 5, f5 = p1 = z; = 0 and by (6), 3 = —t; < 0, this is
impossible. So pg = 0 and by (12), fio = % — Z4 — t3. Since G dose not
have any components where the spectrum of their unions is Hs, p3 = 0
and by (6), p3 = Z3 — t; > 0. Hence by (4), t3 > 5 + }:;2 % — Z3 + 1o,
On the other hand by (12), t3 = %9 — Z4 — §g. So for i # 3,9, we have
% = pg = p1 = I3 = 0. Again, using the previous equations we have
Pr=Ppu = Z3 =11, P14 = P4 = P20 =13, P5s = P2 = ¢; + t3, and Pg = f17 =
Pu=pPo=pr=pPp3 =P =P =ps =p3 =py =p17 = p11 = pg = 0.
Since pig = P19 + Zo — Z19 We have p1g = % = t3 and f1g = 0. So G
has some components where the spectrum of their unions is Hs. This is a
contradiction.

ii) Let £; > 0 and ¢; = 0. By (6), p3 = 0 and 3 = 23 +#;. Let t, > 0 and
t2 = 0. Since G does not have any components where the spectrum of their
unions is Hy, ps = 0 and so fp = Zs. Therefore, for i # 5, p; = z; = 0.
Again, using the above quoted facts we have g = $1; = pa = py7 = 0,
P8 = P17 = t2, pnn = &1 + % and Pz = #;. Since G does not have any
components where the spectrum of their unions is Hy, we have #; = 75 = 0.
By (8), we have t; = 3. Again, using the previous facts ps = pg = pog =
Po = P14 = P17 = tz = f3. So G has some components where the spectrum
of their unions is Hs, this is impossible. Now let ¢, = 0 and £, > 0. Then
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Pps = ps = 0, pg = Zg + &2 and ps = P2 — Z5. If t3 = 0, then by Lemma 3,
G can be determined by its A-spectrum. So we can suppose that {3 > 0
and 3 = 0. Hence by (7), ps = 0 and ps = 24 + t3. Since G dose not
have any components where the spectrum of their unions is Hs, pspe = 0.
If ps = 0, then 5 = Z5. Therefore, for ¢ # 5, p1 = z; = 0 and so by
the previous equations we have P11 = Pg = D14 = P17 = p2o = 0, p11 =
£+ 25 = t3 — I, p17 = £2 and p1g = po = P2o = t3. So p1y +p17 =3 >0
and at least one of the numbers p;; or p;7 is nonzero. Therefore, G has
some components where the spectrum of their unions is either Hg or Ha.
Again, which is a contradiction. If pg = 0, then 5y = Zo — Z3 — 3 and by
(4),po=20—24—ts3 =2~ Z4 — (P + 25:2 Z; + 1 + £2) = 0. Therefore
by the previous facts for ¢ # 9, we have p, = %, = &, = &, = 0 and
ps = Pa = Zo = Pag = P2 = P14 = t3. Since p1g = P19 + Zy — Z19 We have
p19 = t3 and p1o = 0. So G has some components where the spectrum of

their unions is Hs. This is impossible. a
From Theorem 3 we have the following corollaries.

Corollary 1. [9] Let G = P, + P;; + -+ + P;_ be a graph of indez less
than 2. Then G can be determined by its spectrum if and only if G does
not have any components where the spectrum of their unions is H,.

Corollary 2. Let G = t;T) + t2T2 + tals. Then G can be determined by

its A-spectrum.
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