# The spectral characterization of graphs of index less than 2 with no $Z_n$ as a component

G.R. Omidi<sup>a,b,1</sup> and K. Tajbakhsh <sup>c</sup>

<sup>a</sup>Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran

<sup>b</sup>School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box:19395-5746, Tehran, Iran

<sup>c</sup>Department of Mathematics, Chungnam National University, Daejeon, Korea E-mails: romidi@cc.iut.ac.ir and arash@cnu.ac.kr

#### Abstract

A graph is said to be determined by its adjacency spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency spectrum. Although all connected graphs of index less than 2 are known to be determined by their adjacency spectra, the classification of DS graphs of index less than 2 is not complete yet. The purpose of this paper is to characterize all DS graphs of index less than 2 with no  $Z_n$  as a component.

Keywords: Spectra of graphs; Cospectral graphs; Index of graphs. AMS subject classification: 05C50.

### 1. Introduction

<sup>&</sup>lt;sup>1</sup>This research was in part supported by a grant from IPM (No.87050016)

Let G be an undirected finite simple graph with n vertices and the adjacency matrix A(G). Since A(G) is a real symmetric matrix, its eigenvalues are real numbers. So we can assume that  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  are the adjacency eigenvalues of G. The multiset of eigenvalues of A(G) is called the adjacency spectrum (or A-spectrum, for short) of G. The maximum eigenvalue of A(G) is called the *index* of G. Two graphs are said to be cospectral with respect to adjacency matrix (or A-cospectral, for short) if they have the same A-spectra. A graph is said to be determined (DS for short) by its A-spectrum if there is no other non-isomorphic graph with the same A-spectrum. There have been some attempts to characterize graphs having an index at most a given number. In [7] all graphs of index at most 2 are identified. Subsequently, graphs of index not exceeding  $\sqrt{2+\sqrt{5}}$  are determined in [1, 2]. Most of the connected graphs of index at most 2 are known to be DS with respect to the adjacency matrix (see [6, 9, 10]). Moreover, in [4], all connected DS graphs of index at most  $\sqrt{2+\sqrt{5}}$  are identified. Although the classification of DS graphs of index less than 2 is not complete, some important results are known. All connected graphs of index less than 2 are known to be determined by their A-spectra [4]. In [9], it has been shown that the disjoint union of k disjoint paths  $P_{n_1} + P_{n_2} + \cdots + P_{n_k}$  is determined by its A-spectrum as well as the its L-spectrum, where  $n_1, n_2, \ldots, n_k$  are integers at least 2. Moreover, in [6], Shen and others showed that  $Z_{n_1} + Z_{n_2} + \cdots + Z_{n_k}$  is determined by its A-spectrum, where  $n_1, n_2, \ldots, n_k$  are integers at least 2. Recently, we characterized all DS graphs of index less than 2 with no path as a component [5]. For more information about DS graphs we refer the interested reader to [8, 9]. In this paper, we consider graphs of index less than 2, and among them we identify those DS graphs which does not have any  $Z_n$  as a component.

# 2. Graphs of index less than 2

In [7], all connected graphs of index less than 2 are identified. Moreover, all of them are known to be determined by their A-spectra [4].



Fig. 1

**Notation.** The path and cycle with n vertices are denoted by  $P_n$  and  $C_n$ , respectively. For  $a, b, c \ge 1$ , we denote the graph shown in Fig. 1, by T(a, b, c). In particular,  $Z_n (n \ge 2)$  stands for T(1, n-1, 1). We denote the graphs T(1, 2, 2), T(1, 2, 3) and T(1, 2, 4) by  $T_i$  for i = 1, 2, 3, respectively.

**Theorem 1.**[7] The list of all connected graphs of index less than 2 includes precisely the following graphs (see Fig. 1):

- i)  $P_n, Z_n (n \ge 2)$ ,
- ii)  $T_i$  for i = 1, 2, 3.

Let G be a graph of index less than 2. Then G can be represented in a unique way as a linear combination of the form

$$P_{i_1} + P_{i_2} + \cdots + P_{i_l} + Z_{j_1} + Z_{j_2} + \cdots + Z_{j_k} + t_1 T_1 + t_2 T_2 + t_3 T_3.$$

The A-spectrum of the union of two graphs is obviously the union of their spectra (having in view the multiplicities of the eigenvalues). The expressions  $G_1+G_2$  and  $\hat{G}_1+\hat{G}_2$  will denote the union of the graphs  $G_1$  and  $G_2$  and the union of their adjacency spectra, respectively. The expressions kG and  $k\hat{G}$  denote the union of k copies of G and  $\hat{G}$ , respectively. If  $\hat{G}_1\subseteq \hat{G}_2$ , the expression  $\hat{G}_2-\hat{G}_1$  denote the difference of systems of numbers of  $\hat{G}_1$  from  $\hat{G}_2$ .

The A-spectra of graphs of index less than 2 are known [3], and we have:

$$\hat{P}_n = \{2\cos\frac{j\pi}{n+1} \mid j = 1, 2, \dots, n\},\$$

$$\hat{Z}_n = \{ 2\cos\frac{(2j+1)\pi}{2(n+1)} \mid j = 0, 1, 2, \dots, n \} + \{0\},$$

$$\hat{T}_1 = \{ 2\cos\frac{j\pi}{12} \mid j = 1, 4, 5, 7, 8, 11 \},$$

$$\hat{T}_2 = \{ 2\cos\frac{j\pi}{18} \mid j = 1, 5, 7, 9, 11, 13, 17 \},$$

$$\hat{T}_3 = \{ 2\cos\frac{j\pi}{20} \mid j = 1, 7, 11, 13, 17, 19, 23, 29 \}.$$

**Lemma 1.**[9]. For  $n \times n$  symmetric matrices A and B, the following are equivalent:

- i) A and B are cospectral,
- ii)  $tr(A^i) = tr(B^i)$  for i = 1, ..., n.

If A is the adjacency matrix of a graph, then  $\operatorname{tr}(A^i)$  gives the total number of closed walks of length i. So by the above lemma, two A-cospectral graphs have the same number of closed walks of a given length i. In particular, they have the same number of edges and triangles. The following lemma gives some A-cospectral graphs of index less than 2.

Lemma 2./3 The following can be obtained from the above quoted facts:

- i)  $\hat{Z}_n + \hat{P}_n = \hat{P}_{2n+1} + \hat{P}_1$
- ii)  $\hat{T}_1 + \hat{P}_3 + \hat{P}_5 = \hat{P}_1 + \hat{P}_2 + \hat{P}_{11}$ ,
- iii)  $\hat{T}_2 + \hat{P}_5 + \hat{P}_8 = \hat{P}_{17} + \hat{P}_2 + \hat{P}_1$ ,
- iv)  $\hat{T}_3 + \hat{P}_{14} + \hat{P}_9 + \hat{P}_5 = \hat{P}_{29} + \hat{P}_4 + \hat{P}_2 + \hat{P}_1$ .

**Theorem 2.**[3] The A-spectrum of any graph of index less than 2 can be represented in a unique way as a linear combination of the form

$$\delta_1 \hat{P}_1 + \delta_2 \hat{P}_2 + \cdots + \delta_m \hat{P}_m$$
.

The number m is bounded by a function of the number of vertices.

**Lemma 3.**[9] Let  $G = P_{i_1} + P_{i_2} + \cdots + P_{i_r}$  be a graph of index less than 2 and let  $1 < i_1 \le i_2 \le \cdots \le i_r$ . Then G can be determined by its Aspectrum.

### 2. Main results

In this section, we give some A-cospectral graphs. The results will be used to characterize DS graphs of index less than 2 with no  $Z_n$  as a component.

Lemma 4. Let a be a non-negative integer. We have:

i) 
$$\hat{H}_1 = \hat{P}_8 + \hat{P}_{11} + \hat{T}_2 = \hat{P}_2 + \hat{P}_{17} + \hat{Z}_5$$

ii) 
$$\hat{H}_2 = \hat{P}_9 + \hat{P}_{11} + \hat{P}_{14} + \hat{T}_3 = \hat{P}_2 + \hat{P}_4 + \hat{P}_{29} + \hat{Z}_5$$
,

iii) 
$$\hat{H}_3 = \hat{P}_9 + \hat{P}_{14} + \hat{P}_{17} + \hat{T}_3 = \hat{P}_4 + \hat{P}_8 + \hat{P}_{29} + \hat{T}_2$$
,

iv) 
$$\hat{H}_4 = \hat{T}_2 + \hat{P}_5 = \hat{Z}_8 + \hat{P}_2$$
,

v) 
$$\hat{H}_5 = \hat{T}_1 + \hat{P}_3 = \hat{Z}_5 + \hat{P}_2$$
,

vi) 
$$\hat{H}_6 = \hat{T}_3 + \hat{P}_5 + \hat{P}_9 = \hat{Z}_{14} + \hat{P}_2 + \hat{P}_4$$
,

vii) 
$$\hat{H}_7 = \hat{P}_5 + \hat{P}_7 + \hat{T}_1 = \hat{P}_2 + \hat{P}_{11} + \hat{Z}_3$$
,

viii) 
$$\hat{H}_8 = \hat{P}_5 + \hat{P}_{14} + \hat{P}_{19} + \hat{T}_3 = \hat{P}_2 + \hat{P}_4 + \hat{P}_{29} + \hat{Z}_9$$

ix) If 
$$a \ge 2$$
, then  $\hat{H}_9 = \hat{P}_1 + \hat{P}_{2a+1} = \hat{P}_a + \hat{Z}_a$ .

**Proof.** Using Lemma 2, we can represent each side of these equations as a linear combination of the form  $\delta_1 \hat{P}_1 + \delta_2 \hat{P}_2 + \cdots + \delta_m \hat{P}_m$ . It is clear that the two sides of each equation have the same representation.

Let  $G = P_{i_1} + P_{i_2} + \cdots + P_{i_r} + t_1T_1 + t_2T_2 + t_3T_3$  be a graph of index less than 2. Suppose that G has  $p_i$  components of type  $P_i$ . Then for some non-negative integer r, G can be represented as

$$G = \sum_{i=1}^{r} p_i P_i + t_1 T_1 + t_2 T_2 + t_3 T_3.$$

Let H be A-cospectral to G. Since G has index less than 2, H can be represented in a unique way as a linear combination of the form

$$H = P_{j_1} + P_{j_2} + \dots + P_{j_t} + Z_{c_1} + Z_{c_2} + \dots + Z_{c_k} + \bar{t}_1 T_1 + \bar{t}_2 T_2 + \bar{t}_3 T_3.$$

Again, suppose that H has  $\bar{p_i}$  components of type  $P_i$  and  $\bar{z_i}$  components of type  $Z_i$ . Then for some non-negative integers  $\bar{r}$  and  $\bar{l}$ , H can be represented

$$H = \sum_{i=1}^{\bar{r}} \bar{p}_i P_i + \sum_{i=2}^{\bar{l}} \bar{z}_i Z_i + \bar{t}_1 T_1 + \bar{t}_2 T_2 + \bar{t}_3 T_3.$$

Since G and H are A-cospectral and bipartite graphs of index less than 2, by Theorem 2, their spectra can be represented in a unique way as a linear combination of the form

$$\delta_1 \hat{P}_1 + \delta_2 \hat{P}_2 + \dots + \delta_m \hat{P}_m. \tag{1}$$

By Lemma 1, H and G have the same numbers of vertices and edges. Since their components are trees, they have the same number of components and we have:

$$\sum_{i=1}^{r} p_i + t_1 + t_2 + t_3 = \sum_{i=1}^{\bar{r}} \bar{p}_i + \sum_{i=2}^{\bar{l}} \bar{z}_i + \bar{t}_1 + \bar{t}_2 + \bar{t}_3.$$
 (2)

Using Theorem 2, to represent  $\hat{G}$  and  $\hat{H}$  in terms of linear combinations of  $\hat{P}_i$ 's, we can calculate  $\delta_i$  for any i.

$$\delta_5 = p_5 - t_1 - t_2 - t_3 = \bar{p}_5 + \bar{z}_2 - \bar{z}_5 - \bar{t}_1 - \bar{t}_2 - \bar{t}_3. \tag{3}$$

$$\delta_1 = p_1 + t_1 + t_2 + t_3 = \bar{p}_1 + \sum_{i=2}^{\bar{l}} \bar{z}_i + \bar{t}_1 + \bar{t}_2 + \bar{t}_3. \tag{4}$$

By the relations (2) and (4) we have  $\sum_{i=2}^{r} p_i = \sum_{i=2}^{r} \bar{p}_i$ .

$$\delta_2 = p_2 + t_1 + t_2 + t_3 = \bar{p}_2 - \bar{z}_2 + \bar{t}_1 + \bar{t}_2 + \bar{t}_3. \tag{5}$$

$$\delta_3 = p_3 - t_1 = \bar{p}_3 - \bar{z}_3 - \bar{t}_1. \tag{6}$$

$$\delta_4 = p_4 + t_3 = \bar{p}_4 - \bar{z}_4 + \bar{t}_3. \tag{7}$$

$$\delta_{11} = p_{11} + t_1 = \bar{p}_{11} + \bar{z}_5 - \bar{z}_{11} + \bar{t}_1. \tag{8}$$

$$\delta_8 = p_8 - t_2 = \bar{p}_8 - \bar{z}_8 - \bar{t}_2. \tag{9}$$

$$\delta_{14} = p_{14} - t_3 = \tilde{p}_{14} - \bar{z}_{14} - \bar{t}_3. \tag{10}$$

$$\delta_{29} = p_{29} + t_3 = \bar{p}_{29} - \bar{z}_{29} + \bar{z}_{14} + \bar{t}_3. \tag{11}$$

$$\delta_9 = p_9 - t_3 = \bar{p}_9 + \bar{z}_4 - \bar{z}_9 - \bar{t}_3. \tag{12}$$

$$\delta_{17} = p_{17} + t_2 = \bar{p}_{17} + \bar{z}_8 - \bar{z}_{17} + \bar{t}_2. \tag{13}$$

$$\delta_7 = p_7 = \bar{p}_7 + \bar{z}_3 - \bar{z}_7. \tag{14}$$

Lemma 5. Let  $G = P_{i_1} + P_{i_2} + \cdots + P_{i_r} + t_1T_1 + t_2T_2 + t_3T_3$  be a graph of index less than 2. If G has  $P_1$  as a component, then G can be determined by its spectrum if and only if G does not have any components where the spectra of their unions is  $\hat{H}_9$ .

**Proof.** Suppose that G has  $p_i$  components of type  $P_i$ . Then for some non-negative integer r, G can be represented as

$$G = \sum_{i=1}^{r} p_i P_i + t_1 T_1 + t_2 T_2 + t_3 T_3.$$

It is clear that if G has some components where the spectra of their unions is  $\hat{H}_9$ , then G has a A-cospectral mate and so it can not be determined by its A-spectrum. Now suppose that G does not have any components where the spectra of their unions is  $\hat{H}_9$ . We show that if G has  $P_1$  as a component, then G is determined by its A-spectrum. Let H be A-cospectral to G. Since G has index less than 2, for some non-negative integers  $\bar{r}$  and  $\bar{l}$ , H can be represented as

$$H = \sum_{i=1}^{\bar{r}} \bar{p}_i P_i + \sum_{i=2}^{\bar{l}} \bar{z}_i Z_i + \bar{t}_1 T_1 + \bar{t}_2 T_2 + \bar{t}_3 T_3.$$

Without loss of generality we can suppose that at most one of the  $t_i$  and  $\bar{t}_i$  ( $p_i$  and  $\bar{p}_i$ ) is nonzero. So we can suppose that  $p_1 > 0$  and  $\bar{p}_1 = 0$ . Since G dose not have any components where the spectrum of their unions is  $\hat{H}_9$ , for any  $n \geq 1$  we have  $p_{(2n+1)} = 0$ . Let  $S = \{1, 2, 4, 5, 8, 14, \}$  and let  $x \in N - S$  be a natural number. Then for  $n \geq 1$  we have:

$$\delta_{(2^nx+2^n-1)}=p_{(2^nx+2^n-1)}=\bar{p}_{(2^nx+2^n-1)}+\bar{z}_{(2^{n-1}x+2^{n-1}-1)}-\bar{z}_{(2^nx+2^n-1)}=0.$$

Therefore  $\bar{p}_{(2^nx+2^n-1)} = \bar{z}_{(2^nx+2^n-1)} - \bar{z}_{(2^{n-1}x+2^{n-1}-1)} \geq 0$ . It means that the sequence  $\{\bar{z}_{(2^nx+2^n-1)}\}$  is an increasing sequence. If  $\bar{z}_x > 0$ , then  $\bar{z}_{(2^nx+2^n-1)} > 0$  for any  $n \geq 0$ . But this contradicts to the fact that G is a finite graph. So  $\bar{z}_x = 0$ . Since  $p_3 = \bar{z}_3 = 0$ , then by (6),  $\bar{p}_3 = \bar{t}_1 - t_1 \geq 0$ . Again, since  $p_{11} = \bar{z}_{11} = 0$ , by (8) we have  $\bar{p}_{11} = t_1 - \bar{t}_1 - \bar{z}_5 \geq 0$ . So  $\bar{p}_{11} = \bar{p}_3 = t_1 = \bar{t}_1 = \bar{z}_5 = 0$ . Since  $p_9 = \bar{z}_9 = 0$  then by (12),

 $\bar{p}_9 = \bar{t}_3 - \bar{z}_4 - t_3 \geq 0$ . Again, we have  $p_{29} = \bar{z}_{29} = 0$ . So by (11),  $\bar{p}_{29} = t_3 - \bar{t}_3 - \bar{z}_{14} \geq 0$ . So  $\bar{p}_{29} = \bar{p}_9 = t_3 = \bar{t}_3 = \bar{z}_4 = \bar{z}_{14} = 0$ . Since  $p_{17} = \bar{z}_{17} = 0$ , then by (13),  $\bar{p}_{17} = t_2 - \bar{t}_2 - \bar{z}_8$  and we can suppose that  $\bar{t}_2 = 0$ . Again, since  $p_5 = 0$ , by (3) we have  $\bar{p}_5 = \bar{z}_5 - \bar{z}_2 - t_2 \geq 0$  and so  $\bar{p}_5 = \bar{p}_2 = t_2 = \bar{z}_2 = \bar{z}_5 = \bar{z}_8 = \bar{p}_{17} = \bar{p}_8 = 0$ . Since for  $1 \leq i \leq 3$ ,  $\bar{t}_i = t_i = 0$  and for  $n \geq 1$ ,  $p_{(2n+1)} = 0$ , then for any natural number y we have:

$$\delta_{(2^ny+2^n-1)}=p_{(2^ny+2^n-1)}=\bar{p}_{(2^ny+2^n-1)}+\bar{z}_{(2^{n-1}y+2^{n-1}-1)}-\bar{z}_{(2^ny+2^n-1)}=0.$$

Hence  $\bar{p}_{(2^ny+2^n-1)} = \bar{z}_{(2^ny+2^n-1)} - \bar{z}_{(2^{n-1}y+2^{n-1}-1)} \geq 0$ . Again, the sequence  $\{\bar{z}_{(2^ny+2^n-1)}\}$  is an increasing sequence. If  $\bar{z}_y > 0$ , then  $\bar{z}_{(2^ny+2^n-1)} > 0$  for any  $n \geq 0$ . Which contradicts to this fact that G is a finite graph. So  $\bar{z}_y = 0$  and so by (4),  $p_1 = \bar{p}_1$ , which is not possible.

**Theorem 3.** Let  $G = \sum_{i=1}^{r} p_i P_i + t_1 T_1 + t_2 T_2 + t_3 T_3$  be a graph of index less than 2. Then G can be determined by its spectrum if and only if G does not have any components where the spectrum of their unions is  $\hat{H}_i$  (i = 1, ..., 9).

Proof. It is clear that if G has some components where the spectrum of their unions is  $\hat{H}_i$  ( $i=1,\ldots,9$ ), then G has a A-cospectral mate and so it can not be determined by its A-spectrum. Now suppose that G does not have any components where the spectrum of their unions is  $\hat{H}_i$  for  $i=1,\ldots,9$ . We show that G is determined by its A-spectrum. Let  $H=\sum_{i=1}^r \bar{p}_i P_i + \sum_{i=2}^{\bar{l}} \bar{z}_i Z_i + \bar{t}_1 T_1 + \bar{t}_2 T_2 + \bar{t}_3 T_3$  be A-cospectral to G. Without loss of generality we can suppose that at most one of the  $t_i$  and  $\bar{t}_i$  ( $p_i$  and  $\bar{p}_i$ ) is nonzero. Since G does not have any components where the spectrum of their unions is  $\hat{H}_9$ , if  $p_1 > 0$ , then by Lemma 5, G can be determined by its spectrum. So we can suppose that  $p_1 = 0$ . By the relations (4) and (5), we have  $p_2 = \bar{p}_2 - \bar{p}_1 - \bar{z}_2 - \sum_{i=2}^{\bar{l}} \bar{z}_i$ . So  $p_2 = 0$ ,  $\bar{p}_2 = \bar{p}_1 + \bar{z}_2 + \sum \bar{z}_i$  and  $\bar{p}_2 \geq \bar{z}_5$ . Hence by (3), (4),  $p_5 \geq \bar{p}_5$  and we can suppose that  $\bar{p}_5 = 0$  and  $p_5 = \bar{p}_2 - \bar{z}_5$ . We have the following cases:

i) Let  $t_1 > 0$  and  $\bar{t}_1 = 0$ . Since G does not have any components where

the spectrum of their unions is  $\hat{H}_5$ ,  $p_3 = 0$  and so by (6),  $\bar{p}_3 = \bar{z}_3 - t_1$ . If  $t_2 > 0$  and  $\bar{t}_2 = 0$ , then since G does not have any components where the spectrum of their unions is  $\hat{H}_4$ ,  $p_5 = 0$  and so  $\bar{p}_2 = \bar{z}_5$ . Therefore, for  $i \neq 5$ ,  $\bar{p}_1 = \bar{z}_i = 0$  and  $\bar{p}_3 = -t_1 < 0$ , which is impossible. So  $t_2 = 0$  and  $\bar{t}_2 \ge 0$ . If  $t_3 = 0$ , then by (4), we have  $t_1 = \bar{p}_1 + \sum_{i=2}^{\bar{l}} \bar{z}_i + \bar{t}_2 + \bar{t}_3 \ge \bar{z}_3$ . On the other hand,  $\bar{p}_3 = \bar{z}_3 - t_1 \ge 0$ . So  $t_1 = \bar{p}_1 + \sum_{i=2}^{\bar{l}} \bar{z}_i + \bar{t}_2 + \bar{t}_3 =$  $\bar{z}_3$ . Hence for  $i \neq 3$ ,  $\bar{p}_3 = \bar{p}_1 = \bar{z}_i = \bar{t}_2 = \bar{t}_3 = 0$ ,  $t_1 = \bar{z}_3$ . By (8),  $p_{11} = 0$  and  $\bar{p}_{11} = t_1$ . In a similar way by (3), (5) and (14) we have  $t_1=p_5=p_7=\bar{p}_2=\bar{p}_{11}=\bar{z}_3>0.$  So G has some components where the spectrum of their unions is  $\hat{H}_7$ . This is impossible. Hence  $t_3>0$  and  $\bar{t}_3 = 0$ . By (7),  $p_4 = 0$  and  $\bar{p}_4 = t_3 + \bar{z}_4$ . Since G dose not have any components where the spectrum of their unions is  $\hat{H}_6$ , we have  $p_5p_9=0$ . If  $p_5 = 0$ , then by (3) and (4) we have  $\bar{p}_1 + \bar{p}_5 + \bar{z}_2 - \bar{z}_5 + \sum_{i=2}^{l} \bar{z}_i = 0$ . Therefore, for  $i \neq 5$ ,  $\bar{p}_5 = \bar{p}_1 = \bar{z}_i = 0$  and by (6),  $\bar{p}_3 = -t_1 < 0$ , this is impossible. So  $p_9 = 0$  and by (12),  $\bar{p}_9 = \bar{z}_9 - \bar{z}_4 - t_3$ . Since G dose not have any components where the spectrum of their unions is  $\hat{H}_5$ ,  $p_3 = 0$ and by (6),  $\bar{p}_3 = \bar{z}_3 - t_1 \ge 0$ . Hence by (4),  $t_3 \ge \bar{p}_1 + \sum_{i=2}^{\bar{l}} \bar{z}_i - \bar{z}_3 + \bar{t}_2$ . On the other hand by (12),  $t_3 = \bar{z}_9 - \bar{z}_4 - \bar{p}_9$ . So for  $i \neq 3, 9$ , we have  $\bar{z}_i = \bar{p}_9 = \bar{p}_1 = \bar{t}_2 = 0$ . Again, using the previous equations we have  $p_7 = \bar{p}_{11} = \bar{z}_3 = t_1, \, p_{14} = \bar{p}_4 = \bar{p}_{29} = t_3, \, p_5 = \bar{p}_2 = t_1 + t_3, \, \text{and} \, \, \bar{p}_8 = \bar{p}_{17} = t_1 + t_3 = t_2 + t_3 = t_3 = t_3 = t_3 = t_4 = t_3 = t_4 =$  $\bar{p}_{14} = \bar{p}_9 = \bar{p}_7 = \bar{p}_3 = \bar{p}_1 = p_2 = p_4 = p_3 = p_9 = p_{17} = p_{11} = p_8 = 0.$ Since  $p_{19} = \bar{p}_{19} + \bar{z}_9 - \bar{z}_{19}$  we have  $p_{19} = \bar{z}_9 = t_3$  and  $\bar{p}_{19} = 0$ . So G has some components where the spectrum of their unions is  $\hat{H}_8$ . This is a contradiction.

ii) Let  $\bar{t}_1 \geq 0$  and  $t_1 = 0$ . By (6),  $p_3 = 0$  and  $\bar{p}_3 = \bar{z}_3 + \bar{t}_1$ . Let  $t_2 > 0$  and  $\bar{t}_2 = 0$ . Since G does not have any components where the spectrum of their unions is  $\hat{H}_4$ ,  $p_5 = 0$  and so  $\bar{p}_2 = \bar{z}_5$ . Therefore, for  $i \neq 5$ ,  $\bar{p}_1 = \bar{z}_i = 0$ . Again, using the above quoted facts we have  $\bar{p}_8 = \bar{p}_{11} = p_3 = p_{17} = 0$ ,  $p_8 = \bar{p}_{17} = t_2$ ,  $p_{11} = \bar{t}_1 + \bar{z}_5$  and  $\bar{p}_3 = \bar{t}_1$ . Since G does not have any components where the spectrum of their unions is  $\hat{H}_1$ , we have  $\bar{t}_1 = \bar{z}_5 = 0$ . By (3), we have  $t_2 = \bar{t}_3$ . Again, using the previous facts  $p_4 = p_8 = p_{29} = \bar{p}_9 = \bar{p}_{14} = \bar{p}_{17} = t_2 = \bar{t}_3$ . So G has some components where the spectrum of their unions is  $\hat{H}_3$ , this is impossible. Now let  $t_2 = 0$  and  $\bar{t}_2 \geq 0$ . Then

 $\bar{p}_5 = p_8 = 0$ ,  $\bar{p}_8 = \bar{z}_8 + \bar{t}_2$  and  $p_5 = \bar{p}_2 - \bar{z}_5$ . If  $t_3 = 0$ , then by Lemma 3, G can be determined by its A-spectrum. So we can suppose that  $t_3 > 0$ and  $\bar{t}_3=0$ . Hence by (7),  $p_4=0$  and  $\bar{p}_4=\bar{z}_4+t_3$ . Since G dose not have any components where the spectrum of their unions is  $\hat{H}_6$ ,  $p_5p_9=0$ . If  $p_5 = 0$ , then  $\bar{p}_2 = \bar{z}_5$ . Therefore, for  $i \neq 5$ ,  $\bar{p}_1 = \bar{z}_i = 0$  and so by the previous equations we have  $\bar{p}_{11} = \bar{p}_9 = \bar{p}_{14} = \bar{p}_{17} = p_{29} = 0$ ,  $p_{11} =$  $\bar{t}_1 + \bar{z}_5 = t_3 - \bar{t}_2$ ,  $p_{17} = \bar{t}_2$  and  $p_{14} = p_9 = \bar{p}_{29} = t_3$ . So  $p_{11} + p_{17} = \bar{t}_3 > 0$ and at least one of the numbers  $p_{11}$  or  $p_{17}$  is nonzero. Therefore, G has some components where the spectrum of their unions is either  $\hat{H}_2$  or  $\hat{H}_3$ . Again, which is a contradiction. If  $p_9 = 0$ , then  $\bar{p}_9 = \bar{z}_9 - \bar{z}_4 - t_3$  and by (4),  $\bar{p}_9 = \bar{z}_9 - \bar{z}_4 - t_3 = \bar{z}_9 - \bar{z}_4 - (\bar{p}_1 + \sum_{i=2}^{\bar{t}} \bar{z}_i + \bar{t}_1 + \bar{t}_2) \ge 0$ . Therefore by the previous facts for  $i \neq 9$ , we have  $\bar{p}_1 = \bar{z}_i = \bar{t}_1 = \bar{t}_2 = 0$  and  $p_5 = \bar{p}_4 = \bar{z}_9 = \bar{p}_{29} = \bar{p}_2 = p_{14} = t_3$ . Since  $p_{19} = \bar{p}_{19} + \bar{z}_9 - \bar{z}_{19}$  we have  $p_{19}=t_3$  and  $\bar{p}_{19}=0$ . So G has some components where the spectrum of their unions is  $\hat{H}_8$ . This is impossible.

From Theorem 3 we have the following corollaries.

Corollary 1. [9] Let  $G = P_{i_1} + P_{i_2} + \cdots + P_{i_r}$  be a graph of index less than 2. Then G can be determined by its spectrum if and only if G does not have any components where the spectrum of their unions is  $\hat{H}_9$ .

Corollary 2. Let  $G = t_1T_1 + t_2T_2 + t_3T_3$ . Then G can be determined by its A-spectrum.

# References

- [1] A. E. BROUWER AND A. NEUMAIER, The graphs with spectral radius between 2 and  $\sqrt{2+\sqrt{5}}$ , Linear Algebra Appl. 114/115 (1989) 273-276.
- [2] D. M. CVETKOVIC, M. DOOB AND I. GUTMAN, On graphs whose spectral radius does not exceed  $(2+\sqrt{5})^{1/2}$ , Ars Combin. 14 (1982) 225-239.

- [3] D. M. CVETKOVIC AND I. GUTMAN, On spectral structure of graphs having the maximal eigenvalue not greater than two, Publ. Inst. Math. Beograd 18 (1975) 39-45.
- [4] N. GHAREGHANI, G. R. OMIDI AND B. TAYFEH-REZAIE, Spectral characterization of graphs with index at most  $\sqrt{2+\sqrt{5}}$ , Linear Algebra Appl. **420** (2007) 483–489.
- [5] G. R. OMIDI, The spectral characterization of graphs of index less than 2 with no path as a component, Linear Algebra Appl. 428 (2008) 1696-1705.
- [6] X. Shen, Y. Hou and Y. Zhang, Graph  $Z_n$  and some graphs related to  $Z_n$  are determined by their spectrum, Linear Algebra Appl. 404 (2005) 58-68.
- [7] J. H. SMITH, Some properties of the spectrum of a graph, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, 403-406.
- [8] E. R. VAN DAM AND W. H. HAEMERS, Which graphs are determined by its spectrum?, Linear Algebra Appl. 373 (2003) 241-272.
- [9] E. R. VAN DAM AND W. H. HAEMERS, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576-586.
- [10] W. WANG AND C. X. Xu, On the spectral characterization of T-shape trees, Linear Algebra Appl. 414 (2006) 492-501.