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Abstract: In this paper, a sequence representation of Dyck paths is pre-
sented, which yields a sequence representation of the Dyck path poset
D ordered by pattern containment. This representation makes it clear
that the Dyck path poset D takes the composition poset investigated
by Sagan and Vatter as a subposet, and that the pattern containment
order on Dyck paths exactly agrees with a generalized subword order
also presented by Sagan and Vatter. As applications of the representa-
tion, we describe the Mobius function of D and establish the Mébius
inverse of the rank function of D in terms of Dyck sequences. In the
end, a Sperner and unimodal subposet of D is given.
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1 Introduction

A Dyck path is a lattice path in the first quadrant from (0,0) to (2n,0)
consisting of up steps (1,1) and down steps (1, ~1). Call n the semi-length
of the path. Let D be the set of all Dyck paths and D, the set of Dyck paths
of semi-length n. It is well known (see e.g. [1]) that [D,|=C, = n—h(z:),
the nth Catalan number, and thus ) ., |Ds|z" = lgél;;Tz .

Among the many sets of combinatorial objects whose cardinalities are
also given by the Catalan numbers, the most classical example is that of
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complete parenthesis systems [1]. Up steps and down steps in a Dyck path
correspond to left and right parentheses, respectively. Equivalently, we
may encode each up step by a letter u and a down step by a letter d, thus
obtaining the frequently used encoding of Dyck paths by Dyck words.

A pyramid in a Dyck word is a factor of the form u*d*. We refer to h
as the height of the pyramid. A pyramid in a Dyck word w is maximal if,
as a factor in w, it is not immediately proceeded by an u and immediately
followed by a d. An ezterior pair in w is a pair consisting of an u and
its matching d (when viewed as parentheses) which do not belong in any
pyramid. Thus for a Dyck path of semi-length n, the sum of the heights of
its maximal pyramids plus the number of its exterior pairs equal n. The
reader can refer to reference [2] for more details about these two combina-
torial statistics on Dyck paths. Figure 1 illustrates the maximal pyramids
and exterior pairs in a Dyck path of semi-length 10.

Figure 1: Maximal pyramids and exterior pairs in a Dyck path

The poset of Dyck paths of the same length ordered by inclusion has
been studied in [3]. We now define the pattern containment order “<” on
D as follows.

Given two Dyck paths p; and p2 in D, py =X p2 if and only if p; is
obtained from ps by deleting some pyramids and exterior pairs of p2 and
reconnecting the remaining steps in the obvious way. For example, in Figure
2, p1 < p2 since p; is obtained from p; by deleting two pyramids of height
1 and one exterior pair of po. Denote this poset by D. Clearly, D is ranked
with the nth rank D,,.

AN AN TIN
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Figure 2: p; < p2
In Section 2 we present a sequence representation of Dyck paths, named
Dyck sequences, and describe the above pattern containment order on the

set D in terms of Dyck sequences. As applications of the representation, in
Section 3 we describe the Mdbius function of D and establish the M6bius
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inverse of the rank function of D by using Dyck sequences. In Section 4
we find a subposet Q;, of rank 2n — 1 with rank unimodality and Sperner
property, that is, there exists an index r (0 < r < 2n — 1) such that the
rank sequence {a;} of Q, satisfies ag < -+ < a; > -+ > ag,-1, and a,
equals the size of the maximal antichains of Q,. The explicit expression
for the index r is also derived. At last, a conjecture in Section 5 ends the

paper.

2 The sequence representation of Dyck paths

For our purpose, we factorize a Dyck path p € D, into pyramids and
exterior pairs from the origin to (2r,0). Denote the maximal pyramid of
height & by a number “h”, the up step of an exterior pair by a symbol “1”,
and the down step by a symbol “0”. The motivation of introducing 1 and
0 is to distinguish between the exterior pair and the maximal pyramid of
height 1. Thus, for each Dyck path p we get a sequence, denoted by o(p),
consisting of positive integers, 1's and 0’s, satisfying two conditions:

(1) In o(p), the I's and 0's appear pairwise and satlsfy the parenthesis
rule, that is, if o(p) = (... . 1,...,0, ..), and there are
no other 1’s and 0’s from: the ﬁrst 1 to the last 0 then the inner 1
matches the inner 0, and then the outer.

(2) Between each pair of I and 0 there are at least two positive integers.

Conversely, each sequence satisfying (1) and (2) corresponds to a Dyck
path. We call such sequence a Dyck sequence. By D’ we denote the set of
all Dyck sequences. Given a o = (0(1),...,0(m)) € D, call m the length
(o) of 0. Set p(0) =0 (1)' +---+0o(m) —1, where o(i)’ =1 (0) if o) = 1
(0), otherwise o(i)’ = (7). In this case, the Dyck path corresponding to &
is of the rank p(c). For example, the Dyck path illustrated by Figure 1 has
a corresponding Dyck sequence ¢ = (1,1,1,2,2,1,0,0,2) and p(o) = 9.

A sequence is called a generalized Dyck sequence if it satisfies the con-
dition (1) and not necessarily the condition (2). It is easy to see that for
a generalized Dyck sequence we can also obtain a Dyck path. For exam-
ple, the generalized sequence (1,...,1,4,0,...,0) represents the Dyck path

h\,—/ \.\,_4

consisting of a pyramid of height lc + h, or the Dyck sequence (k + h). In
fact, we can obtain a Dyck sequence o from a generalized Dyck sequence
& by replacing every such part with a positive integer and keeping other
parts unchanged. By ¢ we denote the mapping from the set of generalized
Dyck sequences to the set D’. We say two generalized Dyck sequences &;
and G2 are equivalent if 9(&,) = ¥(62), and call &, and &, generalized
representations of the Dyck sequence ¥(&1).
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Set S = NuU {0,1}, where N is the set of all natural numbers. Define
a partial order “<” on S such that N keeps the natural order, 0 and I are
incomparable, and for r € N, » < 0 or r £ 1 if and only if r = 0.

We now describe the pattern containment order on D in terms of Dyck
sequences. For 7 = (7(1),...,7(n)) and o = (0(1),...,0(m)) € D', say
T > o if T contains a generalized Dyck subsequence 7' such that ¥(7') =
(7(1),...,7'(m)) satisfying 7/(i) > o(¢) in S for i = 1,2,...,m. For ex-
ample, (1,1,4,2,0,0,1,2,1,0) = (5,1,1,1,0) because ¥(1,4,0,1,2,1,0) =
(5,1,2,1,0) > (5,1,1,1,0). By D’ we denote the poset on the set D’ of all
Dyck sequences.

Obviously, we can obtain the composition poset studied in [4] from D’
by deleting such Dyck sequences containing 1's and 0's, that is, the Dyck
path poset takes the composition poset as a subposet. Moreover, this order
on Dyck paths corresponds to a generalized subword order as defined in
[4). In the next section we use this correspondence to describe the Mdbius
function of D.

3 The Mébius function and its application

We assume the reader is familiar with Mbius function, but all the necessary
definitions and theorems we use here can be found in Stanley’s text [6].

We begin by defining some relevant definitions.

For a sequence a = (a(1),...,a(n)), its support is the set Supp(a) =
{i | a(s) # 0}. Given o = (0o(1),...,0(m)) € D', an ezpansion of o is a
sequence €, = (€(1),...,€-(n)) such that if we restrict ¢, to its support,
we recover d.

A G-embedding of o into 7 = (7(1),...,7(n)) is an expansion €z =
(€5r(1),...,€5r(n)) of & generalized representatlon & of o such that (i) >
€s-(1) in S for 1 < i < n, and that the pairs of 1's and 0’s appearing in €;,
agree with ones in 7. For example, if r = (1,1,4,1,0,0,2,2,1,2,1, 0),0'—
(521110)anda—(14021110),then(014000201110)
and (1,0,4,0,0,0,0,2,1,1,1,0) are both 5-embeddings of o into 7, but
(0,1,4,0,0,0,2, 0 1,1,1,0) is not since the first pair of T and 0 violates the
definition. Thus ¢ < 7 in D’ also exactly when there is a -embedding of
o into T.

Given o = (0(1),...,0(m)) € D', a run of k’s is the maximal interval
of indices [r, t] such that o(r) = o(r +1) = --- = o(t) = k. A G-embedding
N5+ of o into T to be normal if it satisfies the following conditions:

1. For 1 < i < I(r) we have 75-(¢) = 7(i), 7(i)' = 1 (here (i) # 1,0),
or 0 (Note I matches 0. If 1 is changed to 0, so does its matching 0. For
simplicity, we do not emphasize this rule in the sequel).

2. For every run [r,t] of k’s in 7 we have:
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(2.1) (r,t] C Supp(ns-) if k=1or 1, or
(2.2) [r,t) € Supp(ns,) if k=0, or
(2.3) r € Supp(ns,) if k > 2.
Of the two G-embeddings of ¢ into 7 in the example of the previous

paragraph, the first one is normal but the second one is not, because its
second component violates (2.1), the fifth violates (2.2) and the seventh

violates (2.3).
The defect of a normal G-embedding 75, of ¢ into 7 is defined by

d(ns+) = #{i | n5- (%) = 7(3)' — 1}.

Our sequence representation and the results of [4] apply to give the
Mgébius function of D. '

Proposition 3.1 The Mébius function of D' is given by
plo,7) =Y (=1)%m),

Nar

where the sum is over all normal 6-embeddings 1z, ’s of o into T.

Corollary 8.2 For any Dyck sequence T € D', the Mébius inverse of the
rank function is given by

1, ifr=(k), k>1, or7=(k,...,k), k>1;
0, otherwise.

fry =Y plo,m)p(o) =

oxXT

Proof. f(r) = 5, u(0,7)p(0) = Tyep, ko, 7)p(0), where P, = {o €

D' | o < 7 and pu(o,T) # 0}, so we solve the problem only in the subposet

P, of D',

Case 1. If 7 = (k), k> 1, or 7 = (1,...,1) and ¢(7) = k, then f(r) =

(k—1) — (k—2) =1, as desired.

Case 2. If 7 = (k,...,k), & > 1. From the definition of the normal
——

n
embedding and Proposition 3.1 we know that the first component k in 7
only can be reduced 1 or kept fixed. Choose the first k as the special
component in 7. Set

Py={oc€ P |o=(k...)and £(c) > 1},

Po={c€eP |o=(k-1,...) and ¢(0) > 1},

and P3 = {(k), (k—1)}. A careful analysis of the situation shows that
P, = PPUP,UP; = Py U P U P3, where 7 = (k,...,k). Moreover,

n-1
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P; and P; are disjoint for i # j. The bijection between P; and P, is
clear: 07 = (k,az,...,0m) — (k- 1,a2,...,an) = 02, which implies that
u(o1,7) = —p(o2,7) and p(o1) = p(o2) + 1. See Figure 3 for an example.
From the above analysis we have

fr) = Y wlo,m)p(0)

oc€P,
= > ulenp) + Y wlem)ee) + Y alem)e(o)
o€P; oEP, g€EPs
= Y wo)+ Y wo ) +1
oc€P,, oc€Pn
0+0+1
1,

where ™ = (k, ..., k).

1
(3333)
- -1 -l
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1 1 1

1 1 ]
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Figure 3: The decomposition of P, and its sketch

Case 3. If 7 = (1(1),...,7(n)) € D' but 7 # (k), k> 1,and 7 # (k, ..., k),
k > 1, we decompose P, in the same spirit of Case 2. Based on the form
of 7, P, can be divided into two cases. If 7 consists entirely of runs [r, ]
(r < t) of k’s, where k > 1, then P, falls into (3.2). Otherwise, into (3.1).
(3.1) Choose a proper special component 7(¢) in 7 (it only can be reduced
1 or kept fixed).

oIf 7)) # 1, 1, or 0, and 7(i — 1) # 7(3) # 7(¢+ 1) (r(¢ = 1) or
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7(i + 1) may be empty), set P, ={o0 € P, |o =(...,7(3),...)} and
Po={oc€P |o=(.,7(i)-1,...)}. Then P, = PLUP, & P..UP,.,
where 7/ = (7(1),...,7(3),...,7(n)), the Dyck sequence obtained
from 7 by deleting the component 7(3) of 7.

o If 7(4) = --- = 7(j) = 1 where j > ¢, set P; as the above and

Po={oceP |oc= (1'(1),...,r(i!,...,'r!n!!l. Then P, =PUP, =
P U Prry where 7/ = (7(1),...,7(%),...,7(),...,7(n)).

eIfr())=---=71@+m-1)=1land7(j) = =7(i+m-1) =0,
wherem > 1,set P ={c € Pr|o=(...,7(i),...,7(j +m—1),...)}
and P, ={o € Py |0 2 (7(1),...,7(3),...,7(j + m = 1),...,7(n))}.
Then P, = P,U P, & P, U Py, where 7/ = (7(1),...,
7(@),...,7@G+m—=1),...,7(j),..., TG+ m=1),...,7(n)).

In a word, we can claim that P, = LUP, ¥ P, UP,. PPNP,
may be empty or not. If not, repeat those elements o’s in P, satisfying
o € PN P, such that p(op,,7) + p(op,, 7) = plo,7), where p(op,,7)
denotes the Mdbius function between o € P; and 7. The relationships
between P, and P, are same as that in Case 2. See Figure 4 for an example.

i 1
(3.2.2) 2.2.1,1)
-1 -1 -1 -1 -1 -l
3.1.2) 32 2.2.2) 021, @LL 2.2
1 | | 1 1 | ! |
3L 3.2 (2.1,2)  @2.2,1) (LLLD  Lh @nLh a2
-1 -l -1 -l . -l
(3.1 Q2L (22) (L1.1) (LD @2

1 !
@2.1n (L1

Figure 4: The decompositions of two P,’s

(3.2) Here, we only consider such 7 consisting entirely of runs [r,t] (r < t)
of k’s (k > 1). 7(1) can act as the special component. Suppose 7(1) =
e=r(m)=p, T(m+1)=---=7(j) =g. Set

P, ={o € P, |o(1) =7(1) and 0(2) = 7(2) or 7(2) — 1},

Py={0€ P, |o(1)=7(1) -1 and o(2) = 7(2) or 7(2) — 1},

and P; = P, where 7/ = (7(1),...,7(n)). Then P, = PLUP,UP; &
P U Py U Py, Tt is not hard to see that P, N P, is empty, P, N P3
and P> N P; are both empty if [p — q| > 1, or both not if [p — ¢| = 1
(the sequence (p,p,q,7(j +1),...,7(n)) € P, N P; and the sequence (p —
Lp,q,7(G+1),...,7(n)) € PN P;).
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Evidently, |P)| = |P2| = |Ps]. When |p — g| = 1, we take precisely the
same repetition measures as (3.1). The relationships between P; and P,
are also same as that in Case 2. See Figure 5 for an example.

From the above analysis, for (3.1) we have

fr) = 3 wo,nelo)

o€Py

> wlo,Mp(o) + Y plo,7)p(0)

oceP c€EP;

3 ulo,r)

ceP,,
= 0,

and for (3.2) we have

fr) = Y wo,m)p(0)

o€Pr

= Y wome)+ Y slone@) + Y wome(o)

oePy cEP; oc€Ps

0+ Y plo,7)p(0)

o€Ps

> o, me(o).

o€l

From the condition 7(1) = - .- = 7(m) = p, via m — 1 recursions we have

=3 wlo,™)p(0) = Y plo,7")plo) = (=),

o€P,/ a€P.n

where 7' = ((1),...,7(m — 1), 7(m),...,7(n)). From (3.1) we know

f(r") =o0.
O
By the Mdbius inversion formula, we immediately get

P(T)=Zf(0)=#{0|05‘r, o= (k), k>1, oro=(k,...,k), k>1}.

oXt

4 A subposet with rank unimodality and
Sperner property

From the proof of Corollary 3.2, it is easy to show that for 7 = (k), £ > 1, or
r=(k,..., k), k> 1, the subposet P, = {o € D' |0 X 7 and p(o,7) # 0}
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Figure 5: The decompositions of two P;’s
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is rank unimodal (see Figure 3). It is natural to ask about Q, = {0 € D’ |
o < 7}. Clearly, @, is rank unimodal and Sperner for 7 = (k), k > 1, or
7=(1,...,1) and 4(t) = k, since it is a chain of length k£ — 1. A bit more
generally, we have the following result.

Proposition 4.1 Q. is rank unimodal and Sperner for T = (2,...,2).

Proof. Let () =n > 2. Then p(Q;) =2n—1. Set Q; = {0 € Q. :
p(o) =i} and |Q;| = @; for i =0,1,...,2n - 1.

We say the map ¢ : Q; — Qi41, Or ¢ : Qiy1 — Qs is an order matching
if ¢ is injective and ¢ respects the order, i.e., ¢(c) > o or ¢(o) < o, for all
o € Q-. To show the proposition, it suffices to show that there exist order
matchings Qo — Q1 — -+ Qr «— Qry1 — * - Qan—1 (see [7]).

For our purpose, we here regard 1's as left parentheses and 2’s as right
parentheses. The 1 and 2 in o € @, are paired if two parentheses rep-
resenting them are paired in the parenthesis sequence corresponding to
0. For example, let 7 = (2,2,2,2,2,2) and ¢ = (2,1,2,1,1,2). Then o
corresponds to the sequence of parentheses )()((), which implies that o(2)
matches o(3) and o(5) matches o(6).

Define the two map ¢ and ¢ on Q. as follows:

o(i)=1—2, ifé(c)=n—k (k=>0)and there are at least
2k unpaired 2’s;

élo) =< (1,0), if £(c) =n — k (k > 0) and there are at most
2k — 1 unpaired 2’s;
o, otherwise (c(z) does not exist),

where o(i) = 1 — 2 denotes the Dyck sequence ¢(c) obtained from o by
changing the leftmost unpaired o() = 1 of o to 2.

o(j)=2—1, if £(0) = n — k and there are at least
2k 4+ 1 unpaired 2’s;
(o) = (Tl), ...,o(n—k)), ifo(1) =1 and there are at most 2k
unpaired 2’s;
o, otherwise,

where k > 0 and o(j) = 2 — 1 denotes the Dyck sequence ¢(c) obtained
from o by changing the rightmost unpaired o(j) =2 of o to 1.
' Set r = max{p(0) | p(0) = o}. It is easy to see that r < min{p(o) |
¢(0) = o}.
Now, we prove the restriction ¢ : Q; — Q41 is an order matching if
0 < i < r. Evidently, ¢(c) > o for o € Q;. Given 01,02 € Q;, 01 # 02.

(1) If ¢(01) = (1,01) and ¢(o2) = (1,032), then clearly ¢(c1) # ¢(02).
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(2) If ¢(o1) : 01(5) = 1 — 2 and ¢(02) : 02(j) = 1 — 2, then clearly
&(01) # ¢(02) if i = j. Without loss of generality, we assume 7 < j.
Suppose ¢(01) = ¢(02). Then 01(j) = 2 and o2(¢) = 2. From
o2(j) = 1 — 2 we know that all 1’s appearing in (o3(1),...,02(j —
1)) are paired, which derives that () = 1 is paired, contradicting

01(¢) =1 — 2, s0 ¢(01) # ¢(02)-

(3) If #(01) = (1,01) and ¢(a2) : 02(j) = 1 — 2. We will do the case also
by contradiction. Suppose ¢(01) = ¢(02). Then o2(1) = 1. Suppose
o2(1) matches o2(i) = 2, where i < j (if i > j, it is 02(j) not a2(1)
that matches o2(¢)). Then 01(1) matches o;(3) = 2. If ¢(02) =n—k
(k > 0), then £(o1) = n — (k + 1). According to the definition of the
map ¢ we know that there exist at least 2k unpaired 2’s in g3, so there
exist at least 2k + 2 unpaired 2's in 0, (0,(¢) and o1(j) both belong
in them), contradicting ¢(01) = (1,01), so ¢(o1) # é(02). This final
contradiction finishes the proof that the restriction ¢ : Q; — Q;41 is
an order matching if 0 <i <. .

Taking the similar method we can prove that the restriction ¢ : Q41 —
Q; is an order matching if j > r. m]

While Proposition 4.1 establishes that Q, is the maximal rank set of
Qr, it leaves unresolved the numerical value of r related to the rank of 7.
To do this we need to give an explicit formula for ax. Set the subposet
Qr = {0 | 0 X 7 and {(0) = k}. Observe that the Boolean algebra By
is a subposet of Q. Moreover, they have the same rank numbers. The
bijection between Qi and By is clear: for any o = (0(1),...,0(k)) € Qx,
take p(0) = {i | o() = 2}. Therefore

k+1- .
ge=q Zio("7),  0sk<n-y
2120 k_n+1+1), nSkS2n—l.

Proposntlon 4.2 For o fized n the sequence {ay} satzsﬁes ao < o0 L

ar 2 -+ 2 Qon—1, Wherer = %ﬂ —2ifniseven; r =

1$n$27, andr=% if n is odd and n > 29.

Proof. Note ay = 3,50 (**17) for 0 < k < n — 1 are the Fibonacci
numbers, so the subsequence ao,...,an—1 is strictly increasing. We only
consider the remaining subsequence Gn_1,... ,agn_] For convenience we
rewrite ax (n—1 < k < 2n—1) as bop_1_p = Yiso (5nT1_0)s e,y
be = Yino (1) for 0< k <.

Now, to prove Proposition 4.2 it suffices to prove that by < --- < b, >

>b,,,wheret—2+11fn|seven,t— 1fnxsodda.nd1<n<27
a.ndt— 24l +1ifn is odd and n > 29, consequentlytogetr—2n 1-t.
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Observe that the sequence {cx = (}) + (;23)} for 0 < k <mn+1is
symmetric unimodal because cx = cp—k41. And cg < -+- < cg =cgq1 2

w2cpprifniseven; g < - SCLP >+ 2 cp41 if nis odd.

When 7 is even, the conclusion clearly holds for n = 2, 4. We apply
induction on n. Assume n = 2m > 4 we havet = m+1. Whenn = 2m+2,
from the hypothesis and the symmetric unimodality of the sequence {cx}
for 0 < k< 2m+3 we have bp < b) < -+« € bpyo and by = byyg 2

+ > byms2. We now discuss the relationships among bmi2, bm+3, bm44
and bm+5.

- [(z22)-(ms)]

{7 ()l ()-(2)]
() G| [e)- (2]
(R RERERIES

il
——

= [(2::32) (i”ff)]Jf[(%Z’fll)-(?ﬁle)]
A[C7) - (o)) # [Crz2) - (R3]

= {[(wm) - (ama)] +[(20) - (522)
A((mz2) - (r2)] =)

iR NERNCEN
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(i) - (o) () (e
H{IGR=) - Crzd)]+ [Crez) - ()] )
1)~ (mma )|+ |(n2) - ()]

{[(t)-Go2) - [em) ()

Il
+ —
— ——

> 0
Therefore we have by < -++ < b1 < bnyg > bpaz > -+ > bam42, ie.
t=m+2.
When n = 2m — 1 is odd, we take the similar method. Using Maple we
verify that by, > by holds only for n =2m — 1 < 27. ]

If we change interphase 2 in 7 to 11 to get 7/, then Q, is also rank
unimodal because @, and Q. have the same rank numbers. We know that
the unimodality is a famous problem for partitions (see e.g. [5, 8, 9]). In
fact, Proposition 4.1 and 4.2 imply that the subposet of the composition
poset consisting of compositions contained in (2,2,...,2) is rank unimodal.

5 A conjecture

For any 7 = (k,...,k), k > 2, the rank numbers of Q, are connected to
binomial coefficients. From another point of view it may be more clear.
We define a right factor order on all compositions: Say o is a right factor
of 7 if

1) T =109,
(2) £(v2) = £(0),
(3) o(2) < va(3) for all 1 < i < £(o).

Denote this poset by L. It is not difficult to verify that L is a distribu-

tive lattice. Given 7 € L, set Ly = {t € L | 0 < 7}. For 7 =

(k,...,k), & > 0, we claim that L, is the union of some Boolean alge-

bras. In general, the number of Boolean algebras in L,, equals |L.,|, where

T = (2k,...,2k), 72 = (k,...,k), and the number of Boolean algebras in
N, e’ N o’

n n
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L. equals |Ln| plus the number of Boolean algebras in L,;, where 7] =
@k+1,...,2k+1), 7= (2k+1,...,2k+1), Lp = {0 X 73| £(0) = n}

; n:2
where 7§ = (k+ 1,...,k + 1). The connection between L, and Q- is clear:
nms— p—

n
L. is a subposet of @,. Moreover, |L.| = |Q-| and they have the same
rank numbers.
For 7 = (k,...,k) and ¢(7) = n, we have verified the rank unimodality
of some Q,’s for small values k and n. Generally we conjecture:

Conjecture 5.1 Q. is rank unimodal if T = (k,...,k), where k > 2.
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