ON THE GENERALIZED FIBONACCI AND PELL
SEQUENCES BY HESSENBERG MATRICES

E. KILIC! AND D. TASCI?

ABSTRACT. In this paper, we consider the generalized Fibonacci and
Pell Sequences and then show the relationships between the general-
ized Fibonacci and Pell sequences, and the Hessenberg permanents
and determinants.

1. INTRODUCTION

The Fibonacci sequence, {F,}, is defined by the recurrence relation, for
n>1
Fn+1 =Fn+F —1 (1.1)

where Fy = 0, F; = 1. The Pell Sequence, {P, }, is defined by the recur-
rence relation, for n > 1

P-n+1 =2Pn+P -1 (1.2)

where Py =0, P, = 1.

The well-known Fibonacci and Pell numbers can be generalized as follow:
Let A be nonzero, relatively prime integers such that D = A?+-4 # 0. Define
sequence {un} by, for all n > 2 (see [17]),

Up = AUno1 + Up—2 (1~3)'

where ug =0, u; = 1. If A = 1, then u, = F,, (the nth Fibonacci number).
If A =2, then u, = P, ( the nth Pell number).
If the roots of the equation ¢ — At — 1 =0 are o and =, then the Binet

formula of {u,} is given by for n > 0
ot — 7"

Uy =
n a_'y
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The sequence {u,} have studied by several authors (see [6], {1]). The
following identities can be found in {6], [1]:

|2
Unt1 = ), (n;k)A"'z". (1.4)

There are many connections between permanents or determinants of
tridiagonal matrices and the Fibonacci and Lucas numbers. For exam-
ple, Minc [15] define a n x n super diagonal (0,1) —matrix F (n,k) for
n > k > 2, and show that the permanent of F(n,k) equals to the gen-
eralized order-k Fibonacci numbers. Also he give some relations involving
the permanents of some (0, 1) —Circulant matrices and the usual Fibonacci
numbers. In [10], the authors present a nice result involving the permanent
of an (—1,0, 1)-matrix and the Fibonacci Number F}, ;. The authors then
explore similar directions involving the positive subscripted Fibonacci and
Lucas Numbers as well as their uncommon negatively subscripted counter-
parts. Finally the authors explore the generalized order-k Lucas numbers,
(see [20] and [9) for more detail the generalized Fibonacci and Lucas num-
bers), and their permanents. In [12] and [13], the authors gave the relations
involving the generalized Fibonacci and Lucas numbers and the permanent
of the (0, 1) —matrices. The results of Minc, {15], and the result of Lee, [12],
on the genersalized Fibonacci numbers are the same because they use the
same matrix. However, Lee proved the same result by a different method,
contraction method for the permanent (for more detail of the contraction
method see [2]). In [14], Lehmer proves a very general result on permanents
of tridiagonal matrices whose main diagonal and super-diagonal elements
are ones and whose subdiagonal entries are somewhat arbitrary. Also in
[18] and [19], the authors define a family of tridiagonal matrices M (n) and
show that the determinants of M (n) are the Fibonacci numbers F2,42. In
[5] and([4], the family of tridiagonal matrices H (n) and the authors show
that the determinants of H (n) are the Fibonacci numbers Fy,. In a similar
family of matrices, the (1,1) element of H (n) is replaced with a 3. The
determinants, [3], now generate the Lucas sequence Ly. In [7], the authors
find the families of (0, 1) —matrices such that permanents of the matrices,
equal to the sums of Fibonacci and Lucas numbers. In [8], the authors
define two tridiagonal matrices and then give the relationships the per-
manents and determinants of these matrices and the second order linear
recurrences. In [11), the authors define two generalized doubly stochastic
matrices and then show the relationships between the generalized doubly
stochastic permanents and second order linear recurrences.
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A lower Hessenberg matrix, A, = (ai;), is an n x n matrix where
ajx = 0 whenever £ > j + 1 and a; j+1 # O for some j. Clearly,

[ a7 a2 O ven 0 ]
a1 a2 @ . 0
An=1| a5 am @ 0
: . Gn-1,n
[ Gn1 Qnp2 ... Qpnp-) Qnn |

Also, in [5], the authors consider the above general lower Hessenberg
matrix and then give following determinant formula: for n > 2,

n-1 n=1
det An = ann.det An_1 + Y [ (-1)" " ams [] 05541 det Ar_y | .

r=1 j=r

Furthermore, the authors consider the Fibonacci sequence, {F,,}, and then
give an example: Let

(2 1 0 0
12 1 0
Dn=f11 2 " o0
S P |
11 .01 2]

and then state that the determinants of the first few matrices are det D; =
2, det D; = 3 and det D3 = 5, and, it runs out that this sequence is precisely
{F,} starting at n = 3.

In this paper, we consider the generalized Fibonacci sequence {un} and
then we show the relationships between the Hessenberg determinants and
permanents, and the generalized Fibonacci sequence {u,}. Consequently,
our results are more general in fact that the generalized Fibonacci sequence.

2. ON THE GENERALIZED FIBONACCI SEQUENCE BY HESSENBERG
MATRICES

In this section we define a n x n lower Hessenberg matrix and then
show that its determinant and permanents produce the terms of generalized
Fibonacci sequence {u,}.
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We define the n xn lower Hessenberg matrix H, = (hi;) with hy; = A%+1
for all 7 and 1 otherwise. Clearly

[ A% +1 1
1 A%+1
H, = 1 1
1 1
1 1

0
1
A2 41

1

1

0 0 1
0
0 )
1 0
A2+1 1
1 A?+41 |

(2.1)

Also we define another the n x n lower Hessenberg matrix T, = (t;;) with

ti=A2+1for1<i<n—1, ¢ty =1 and 1 otherwise. Clearly

[ A2 +1 1 0 0 0
1 A2+1 1 : 0
Tn = : : 0 (2.2)
1 1 1 0
1 1 L1 A%241 1
| 1 1 1 1]

Then we start with the following Lemma.

Lemma 1. Let the n x n Hessenberg matrices Hy, and T, have the forms
(2.1) and (2.2). Then, forn >3

det T, = A%det H,_,.

Proof. We use elementary operations of determinant. Subtracting the (n —1)s
row from the nth row and then expanding with respect to last row gives

A2 4+1 1 0o ... 0 0
1 A%+1 1 . 1 0
detT,, = : : 0
1 1 1 0
1 1 1 A%241 1
0 0 0 -4A% o0
A% 41 1 0 0 0
1 A24+1 1 0
= A? )
= 4 : 0
1 1 1 0
1 1 1 A?2+4+1 1
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Considering the definition of the matrix H, and expanding with respect to
last column, we obtain

A% +1 1 0 0 0
1 A?241 1 : 0
detT, = A? : : . 0 :
1 1 L A% 1 0
1 1 1 A2 41 1

1 1 1 1 A2 41

= A%det H,_,.
So the proof is complete. a

Now we give our main result with the following Theorem.

Theorem 1. Let the hessenberg matriz H, has the form (2.1). Then, for
n>0

[ =]

det Hn = E (n+,2t—k) A2n—2k
k=0
= A" lugyo

where uy, is the nth term of the sequence {un} and A be as before.
Proof. We will use the induction method to prove that det H, = A" u, 5.

If n =1, then we have

det Hl

1
det [A% +1] = z Pk Az

QA+ (DA =A% +1=u,.

If n = 2, then we have

det H, = det[ 1 A2 41

§
et - (a0
= A*+24% = Au,.

We suppose that the equation holds for n. That is,
det H, = A" ..

Then we show that the equation holds for n + 1. If we compute the
det H,. 41 by laplace expansion of determinant with respect to last column,

A2 +1 1 }
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then we have

A% 41 1 0 0 0
1 A2 41 1 : 0
det Hpp1 = 1 1 A2 41 e 0 :
: : . 1 0
1 1 1 A%2+1 1
1 1 1 1 A% 41
A% 4+1 1 0 0
1 A2 41 : :
= 2 . . .
- (A +1) : : - 1 0
1 1 1 A%41 1
1 1 1 A% 41
A? 41 1 0 0
1 A?4+1 : :
- : : . 1 0
1 1 1 A%2+4+1 1
1 1 1 1

From the definitions of the matrices H,, and T}, we may write
det Hyy1 = (A% + 1) det H, — det T,.
Using the result of Lemma 1, we can write the last equation as
det Hpyy = (A2 +1) det H, — A%det H—2
and by our assumption we obtain
det Hop1 = (A2+1) A" lupnys — A2A™ 3y,
(A™+t 4+ AN upgs — ALy,

From the recurrence relation of the sequence {u,}, we write the last equa-
tion as follow

det Hypp = (A""'l + A™ ) (Aunyr +un) — Ay,
A2y 0+ Aty + AP, + A N, — A N,
A2y + A Uggr + Ay,
Artl (Aun+1 + un) + A"un4y
Al sg + AMUnyy = A™ (Atnyz + Unga)
Aty
n+3
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or
n+42

det Hn+l = E (n+2—k)A2n+2—2k_
=0

]

For example, when A = 1, the sequence {u,} is reduced to the Fibonacci
sequence {Fy}, and by Theorem 1, we have that

So the proof is complete.

21 0 0

1 2 1 0
detH,=|1 1 29 0|=Fn

Dol |

11 1 2

which is given in [5].

A matrix A is called convertible if there is an n x n (1, —1) —matrix H
such that perA = det (A o H), where Ao H denotes the Hadamard product
of A and H. Such a matrix H is called a converter of A.

Let S be a (1, —1) —matrix of order n, defined by

( 1 -1 1 ... 1 1
1 1 -1 1 1
s | o A
1 1 1 -1 1
1 1 1 1 -1
|1 1 1 1 1]
We denote the matrices H, o S by B, respectively. Thus
[ A2+1 -1 0 0 0 ]
1 A%+1 -1 : 0
B, = 1 1 A4 0 : (2.3)
: : : -1 0
1 1 o1 A241 -1
! 1 1 1 A%2+1

Then we have the following Theorem without proof,

Theorem 2. Let the nxn Hessenberh matriz By, has the form (2.8). Then,
forn>0
An—lun+2

n+1

EJ (n+’t-k)A2n—2k

=0

perB, =
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where uy, is the nth term of the sequence {un}.

For example, when A = 2, the sequence {u,} is reduced to the Pell
sequence {P,}, and by Theorem 2, we have

[5 -1 0 ... 0]
1 5 -1
perBn = peri 1 1 5 0
: S
11 -
ngs
= ng;" (vHi-k)g2n-2k —gn-1p

3. ON THE TERMS u2n+1 AND ug,

In this section, we define two lower Hessenberg matrices and then we
show that their determinants equal to the terms ugn+1 and u2,.
Firstly, we define a n x n lower Hessenberg matrix W, = (w;;) with

wy = A% + 1 for all 4, w41 = —1, wi; = A% for i > j and 0 otherwise.
That is,
[ A2+1 -1 o ... 0 0
A2 A?41 -1 .. 0
w,=| 4 A2 A*+1 .0 : . 3))
: : R ! 0
A? A? A2 A%+1 -1
a2 o2 a2 . A A4

Then we have the following Theorem.

Theorem 3. Let the nxn lower Hessenberg matric Wy, has the form (3.1).
Then, forn > 1

det Wy, = ugn41

where u, is the nth term of the sequence {un}.

Proof. We will use the induction method to prove that det Wy, = ugn41. If
n = 1, then we have

det W) = det [A2+1] =A2+1=u3.
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If n = 2, then we have

A24+1 1
A2 A4

A +3A4% +1=us.

det Ws

det [

Now we suppose that the equation holds for n. That is,
det Wy, = ugn41.

Then we show that the equation holds for n + 1. Thus using elementary
row operations of determinant with subtracting the (n + 1)st row from the

nth row gives

A241 -1 0 0 0

A2 A?241 -1 : 0

det Wy =| A2 A2 A% 41 0 :
: : I | 0

A? A? e A2 A241 -1
-1 -1 -1 -1 A?42

Also if we compute the above determinant by Laplace expansion of deter-
minant with respect to the last column, then we have

A241 -1 0 0

A2 A4 1 :

detWypy = (A2+2) A2 A? A2 41 0
: : ) S |
A2 A2 A2 A%41

A2+1 -1 0 0 0
A2 A?241 -1 0

+| 42 A2 A4 0 :
: : ' -1 0

A? A? . A2 A%241 1

0 0 0 0 -1

Using again the same Laplace expansion of determinant and by the defini-
tion of the matrix W,,, we can write that

det Wpy1 = (A2 +2) det W, — det Wp_,.
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Now by our assumption and the recurrence relation of the sequence {un},

we may write that
det Wn+1

(A% + 2) ugn41 — uzn-1

(A% + 1) ugn41 + U2n41 = Uzn-1

(A% + 1) ugnt1 + Atgn + Uzn—1 — Uzn-1
(A2 + 1) Uon41 + Auop

A2u2n+l + U2p+1 + Aug,

A (Auzni1 +uzn) + U2n+1

Auzni2 + U2n41

U2n+3-

So the proof is complete. O

Second, we define a n x n lower Hessenberg matrix V;, = (v;;) with
vig=A2+1for2<i<n, v = A% v = A? for i > j, vii41 = —1 and
0 otherwise. Clearly

A2
A2
A2
A2
A2

-1 0 0 0
A241 -1 ... : 0

A? A2+1 - 0 . (3.2)

: PRI | 0

A? . A2 A241 -1

A? A2 ... AT A4 |

Now we have the following Theorem.

Theorem 4. Let the n x n lower Hessenberg matriz Vy, has the form (3.2).
Then, forn >0

det V,, = Aug,

where u,, i3 the nth term of the sequence {un}.

Proof. We will use the induction method to prove that det V;, = Aug,. If

n =1, then

det V; = det [A?] = A% = A.A = Aup.

If n = 2, then we have

A2 -1
detVp = det[A2 A2+1]

A% +24% = A (A% +24)
AU4.
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We suppose that the equation holds for n. That is,
det V, = Augzy,.

Then we show that the equation holds for n + 1. Thus, if we compute the
det Vo.41 by Laplace expansion of determinant with respect to the first row,
then we have

A2 1 0 0 0
A? A%241 -1 0
detVpyr = A? A? A2+1 e 0
: : PR | 0
A? A2 . A2 A241 0 1
A? A2 A2 ... AT A2+
A2+1 -1 0
r A2 A%241 0
B : - -1 0
A? . A% A241 1
A? A2 ... A2 A%41
A2 -1 0 0
A% A?241 . 0
S TS O | 0
A2 .. A% A241 1
A2 A2 ... A2 A4

Considering the definitions of the matrices V;, and W,,, we may write that
det Vpyy = A% det Wy, + det V,.

Also by our assumption and the recurrence relation of the sequence {u,},
we write

det Vn+1 = A2u2n+l + Aug,
= A(Augnyr + uzn)
= Augnia.
So the proof is complete. O
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Let S be the (1, —1) —matrix of order n as before. We denote the ma-
trices W, 0 S and V, 0 S by G, and K,,, respectively. Clearly

[ A2 +1 1 0 0 0
A2 A% 1 : 0
G, = A2 A? AZ+1 - 0 (3.3)
K : 1 0
A2 A? ... A? A?241 1
| A2 A? A2 A A%+ ]
and
[ A2 1 0 0 0
A? A2 41 1 : 0
K,=|4 4 A+1 "™ 0 . (34)
: : 1 0
A2 A2 L. A% O A?241 1
| 42 A? A2 L. A APy

Then we have the following Theorems without proof.

Theorem 5. Let the n xn lower Hessenberg matriz G, has the form (3.3).
Then, forn >0
perGn = Uzn+1

where u, is the nth term of the sequence {un}.

Theorem 6. Let the n xn lower Hessenberg matriz K, has the form (3.4).
Then, forn >0
perK, = Aug,

where u,, is the nth term of the sequence {un}.

For example, when A = 1, the sequence {u,} is reduced to the Fibonacci
sequence {F,} and by the above results

2 -1 0 ... O 0
1 2 -1 ... ¢ 0
det|1 1 1 .0 E = Fonq1
S 1o
1 1 ... 1 2 -1
101 01 .12 ]
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and when A = 2, the sequence {u,} is reduced to the Pell sequence {P,}
and

[4 1 0 ... 0 0]
45 1 ...:0
per 4 4 5 0 = 2P,,.
S B
44 ... 4 51
44 4 4 5

Using the identity (1.4) and the above Theorems, we give following rep-
resentations:

n
det W,, = perG,, = k‘;o (2nk—k) A2n—2%k
and
2252
detV, =perK,= Y (2n-k1-k) A2n—2k
k=0
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