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Abstract

In J.-P. Serre’s Lettre ¢ M. Tsfasman [3), an interesting bound for
the maximal number of points on a hypersurface of the n-dimensional
projective space PG(n,q) over the Galois field GF(q) with g ele-
ments is given. Using essentially the same combinatorial technique
as in (3], we provide a bound which is relative to the maximal di-
mension of a subspace of PG(n, g) which is completely contained in
the hypersurface. The lower that dimension, the better the bound.
Next, by using a different argument, we derive a bound which is
again relative to the maximal dimension of a subspace of PG(n, q)
which is completely contained in the hypersurface. If that dimension
increases for the latter case, the bound gets better.

As such, the bounds are complementary.
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Notation

- In this note, PG(n, g) is the n-dimensional projective space over the
Galois field GF(g) with g elements.

- gn = 9% is the number of points of PG(n, ¢); in particular, p_; =
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- ®(Xo,X1,...,Xn) = ® is a homogeneous nonzero polynomial of de-
gree d < g+ 1, with coefficients in GF(g) (so ® defines a hypersurface
in PG(n, q); in particular, for n = 2, ® defines an algebraic curve),
and S is the set of GF(g)-rational points of ®.
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1 Serre’s Bound
With the notation of the previous section, J.-P. Serre proves the following

Theorem 1.1 (J.-P. Serre [3]) We have that
N <dg"™" +pn-2.

Consider the projective space PG(n, g), and define F(n,k,q), 0 < k < n,
k€N, by

n—2
Pn-1
F(n,k,q *
(, )= ;qppzﬂ

ifke{1,2,...,n—2},and F(n,k,q)=0ifk=00rk>2n-1.
In this note we will prove that
Theorem 1.2
N < dg"" + pu-2 + (d = (g + 1) F(n, k,q),

where k < n—1 is the mazimal dimension of a PG(k, q) C PG(n, q) which
is completely contained in S.

The lower k, the better the result. When k& = 0, Theorem 1.2 is essentially
covered by Theorem 3.1.

Note that
n—2 P n-—-2 Pr—3 P 1
n k q qt n-1 qn—2—t+ n—3-1 1- i—1 > -k-2 -,
g; PiPi+1 2( Pit+1 X ) ? q

for1<k<n-2.

Substituting in Theorem 1.2 yields
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N <dg*™" +pna+(d=(g+1))g"*2
(Recall that N € N, and that 1 <d <¢g+1.)

The second main theorem is

Theorem 1.3 Suppose ® is a homogeneous polynomial of degree d < ¢
with coefficients in GF(q). Let S be its set of GF(g)-rational points in
PG(n,q), n > 2, and suppose that Il,,_, is a subspace of PG(n,q) of
mazimal dimension which is contained in S, m —1<n —-2. Then

N =S| < dg" ' +ppz+(d—(g+1))g™ .

The bound gets better if m increases.
Under the hypotheses of Theorem 1.3, a combination of the main results

will then lead to

N<dg" '4ppa2+(d—(g+ 1)) g™ +g" ™! -1).

Remark 1.4 Each of the main results is obtained by using elementary
combinatorial methods from projective geometry; the Hasse-Weil bound
(1, 2, 6, 7] is not used.

2 Proof of Theorem 1.2

We do not consider the case d = g + 1, as in that case p, = dg"~! + pp_a.
So d < q. The proof is by induction on . We assume that n > 2 as the case
n =1 is easy. Let F,F3,..., F, be the different linear factors of ® over
GF(g), and suppose that ITj,IIy,...,II, are the hyperplanes of PG(n,q)
which correspond to Fy, F3, ..., Fr, respectively. Then U = |J_, II; is con-
tained in §. We assume that S # ), as that case is trivial. We distinguish
two cases.

(i) U=5 AND 7> 1. In that case, k =n—1, so F(n,k,q) = 0. See,
e.g., J.-P. Serre [3] for this case.

(i) U # S orR & HAS NO LINEAR FACTORS OVER GF(q). Let p be
a point of S which is not in U. If then II is a hyperplane of PG(n,q)

containing p, then the restriction of ® to IT is not identically zero. Hence
we can apply the Induction Hypothesis on S N1II to obtain that

ISNT| < dg" 2 + pp_3 + (d ~ (g + 1)) F(n — 1,K', q),
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where k' is the maximal dimension of a PG(k’,q) which is completely
contained in § NII. Now we count in two ways the number & of point-
hyperplane pairs (p',II) for which p’ is a point of S\ {p} and I’ is a
hyperplane containing p and p’. Clearly we have that

6= (N - l)pn_g.

Now fix a hyperplane II” containing p; then there are at most dg™~2 +
Pn-3+ (d—=(g+1))F(n — 1,km,q) — 1 points contained in (SNII")\ {p},
where k., is the maximal k* for which there is a hyperplane IT* of PG(n, q)
containing p, so that SNII* contains a PG(k*,q) (note that » < r’ implies
that F(n,r,q) > F(n,r',q)). Hence

8 < p,._l(dq“’2 +pn-3+({d—(g+1)F(n—1,km,q) —1).
Thus we obtain that

Ns1+%%w¢4+m4+w—m+nwm—Lhm@—w

and direct computations lead to

N< dq"_l + Pn—2+ (d— (q + 1))F(n>km: Q)'

It is now clear that

(d=(g+1)F(n,km,q) < (d- (¢ +1))F(n,k,9),

where k is the maximal dimension of a PG(k, q) C PG(n, g) which is com-
pletely contained in S. The theorem follows. [ ]

Notation. In the rest of this note, we denote by F(n,q) the following.
F(n,q) = 222 + P(n,1,q).
n
Clearly,

Pn—-1 -3 1 -2 n—3 1
F(n S22 4t (>d" "+ S
(n,q) o T q( q q q)

3 An Interesting Corollary

There is an interesting corollary of the proof of Theorem 1.2:
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Theorem 3.1 Suppose & is a homogeneous polynomial of degree d < q+1
with coefficients in GF(q). Let S be the set of GF(q)-rational points in
PG(n,q), n > 2, and suppose the following property is satisfied:

(L) There is no line in PG(n, g) which is completely contained in S.

If N =S|, then we have that

N <dg"" ' +pp_2+(d—(g+1))F(n,q).

Proof. As in Section 2, we may assume w.l.o.g. that d < q. Again the
proof goes by induction on n. We start with supposing that n = 2. Then
F(2,q) = 1, and by considering Property (L), the theorem follows from J.
A. Thas [4]. Now suppose that n > 3. Suppose F},II;,U, etc. are as in
the proof of Theorem 1.2. We also assume that S # @ to avoid triviallity.
Then clearly U # S (Case (ii) of the proof of Theorem 1.2). In fact, U = 0.
Let p be a point of S. If IT is a hyperplane of PG(n, q) containing p, then
the restriction of ® to II is not identically zero. As Property (L) holds for
the restriction of ® to II, we can apply the Induction Hypothesis on SNII
to obtain that

ISNTI| < dg"™2 + pa—3 + (d = (¢ +1))F(n - 1,9).

Now we count in two ways the number 8 of point-hyperplane pairs (p/, IT")
for which p’ is a point of S\ {p} and II' is a hyperplane containing p and
p’. Then § = (N — 1)p,_o.

Fix a hyperplane IT” containing p; then there are at most dg"~2 4 p,_3 +
(d=(g+1))F(n—1,g) — 1 points contained in (S NII”)\ {p}. Hence

6< pn—l(dqn_2 +pn-3+(d—(g+ 1))F(n -1,9) - 1)

Thus we obtain that
N<1+ 51'-—;[dqﬂ-’ +pa-3+(d—(g+1))F(n-1,9) - 1],
e
and hence

N <dg™™' +pna+(d = (¢+1))F(n,q).
]

Remark 3.2 The function F(n,q) can be adapted in the obvious way to
functions F’(n,q) for which F'(n,q) > F(n,q) for all n and g, and so that
in the previous theorem F(n,g) can be replaced by F'(n, q), if the bound
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N<dg+d—-g¢

for the number N of points on & plane algebraic curve in PG(2, q) of degree
d with no linear components (i.e., for d < ¢ the case n = 2 with the
assumption of Property (L)) is improved. See e.g. J. A. Thas [5] for such
improvements.

4 A Second Approach

We now obtain

Theorem 4.1 Suppose ® is a homogeneous polynomial of degree d < g
with coefficients in GF(q). Let S be the set of GF(g)-rational points of ®
in PG(n,q), n > 2, and suppose that [I,—1 is a PG(m —1,9) C PG(n,q)
which is contained in S. Suppose that S # PG(n,q), and that no hyper-
plane of PG(n, q) which contains Il,,_1, is contained in S. Then

N =8| <dg" ' + pa—z + (d = (¢ + 1))g™ .

Proof. Suppose that S # PG(n,q), and that II,,_; is a PG(m—1,q) C
PG(n, q) which is contained in S. Suppose that no hyperplane of PG(n, g)
containing II,_; is contained in S. Then there is & PG(m,q) = Il
containing II,,—; which is not contained in S. Now count in two ways the
number of point-hyperplane pairs (p,II) for which p C II, where p is a
point of S\ M, Mn-1 C II, and where II, ¢ II. If a = |[[In N S| and
B=|Up-1NS|=pm_1, then

(N _ a)qn-m-—l < qn-m(N; _ ,3),
with N’ the theoretical upper bound for the number of points of S in a
hyperplane of PG(n, g) for which & is not identically zero, so
N <gN' -gB+a=gN' - gpm-1+

Applying Theorem 1.1 (and remarking that we are not necessarily in Case

(ii) of the proof of that theorem for Il,), we obtain
N < g(dg""% + pn-3) — gPm—-1 + dg™ " + Pm—2.
The theorem follows. ]

Hence the following very general theorem.
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Theorem 4.2 Suppose ® is a homogeneous polynomial of degree d < q
with coefficients in GF(q). Let S be the set of GF(q)-rational points of ®
in PG(n,q), n > 2, and suppose that IIm—1 is a subspace of PG(n,q) of
mazimal dimension which is contained in S, m —1<n—2. Then

N=|8<dg" '+ pna+(d—(g+1))g™ "

Proof. Suppose II,, is an arbitrary m-dimensional subspace of PG(n, q)
which contains I, ;. Then II,, is not contained in S. Also, no hyperplane
of PG(n, q) which contains II,,,_,, is contained in S. Hence Theorem 4.1
applies. [ ]

In fact, by using the (rather messy) bound of Theorem 1.2, we can do a
little better. For, suppose ¢ is a homogeneous polynomial of degree d < g
with coefficients in GF(q). Let S # @ be its set of GF(g)-rational points
in PG(n,g), n > 2, and suppose that II,,_; is a PG(m - 1,q) C PG(n,q)
contained in S, and which is a subspace of PG(n, q) of maximal dimension
which is contained in S, m —1 < n — 2. Then each PG(m,q) = I,
containing I, is not contained in S. Then applying the proof of Theorem
4.1, and remarking that for each hyperplane II containing II,,—; and not
I, the maximal dimension of its subspaces which are completely contained
in S is also m — 1 (the same holds for II,,), we have

N =8| < gN'—gpm-1+a = q(dg" 2 +pn_3+(d—(g+1))F(n—1,m—1,q))

—gPpm-1+dq" " + Pz + (d - (¢ + 1))F(m,m — 1,q).

Hence
n-=3 D
N<dg" ™ +paa+ (@~ (@+1))g" " +q Y g2,
i=me1 PiPi+1

where we emphasize that m < n — 1. Thus

N <dg* ' +ppa+(d—(g+1))(g™ + ¢ ™1 - 1).
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