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Abstract

A graph G is N™-locally connected if for every vertex v in G,
the vertices not equal to v and with distance at most m to v in-
duce & connected subgraph in G. In this note, we first present a
counterexample to the conjecture that every 3-connected, N2-locally
connected claw-free graph is hamiltonian and then show that both
connected N2-locally connected claw-free graph and connected N3-
locally connected claw-free graph with minimum degree at least three
have connected even [2, 4]-factors.
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1 Introduction

We use [1] for terminology and notations not defined here, and consider
finite simple graphs only. Let G be a graph. Denote by dg(v) the degree
of a vertex v € V(G). For a vertex v of G, the neighborhood of v, i.e., the
set of all vertices that are adjacent to v, will be called the neighborhood
of the first type of v in G and denoted by Ni(v,G), or briefly, N;(v) or
Ng(v). We define the neighborhood of the second type of v in G (denoted
by N2(v,G), or briefly, N2(v)) as the subgraph of G induced by the edge
subset {e = zy € E(G) : v ¢ {z,y} and {z,y} N N(v) # 0}. We say
that a vertex v is locally connected if G[N(v)] is connected; and G is locally
connected if every vertex of G is locally connected. Analogously, a vertex
v is Na-locally connected if Ny(v) is connected; and G is called Na-locally
connected if every vertex of G is Na-locally connected. It follows from the
definitions that every locally connected graph is Na-locally connected. A
graph G is claw-free if it does not contain K3 as an induced subgraph.
The following theorems give the hamiltonicity of the locally and Na-locally
connected graph.

Theorem 1.1 (Oberly and Sumner, [9]) Every connected locally connected
claw-free graph on at least three vertices is hamiltonian.

The following was conjectured by Ryjégek {11] and recently proved
affirmatively in [5].

Theorem 1.2 (Lai, Shao and Zhan, [5]) Every 3-connected N2-locally
connected claw-free graph is hamiltonian.

For a graph G and a vertex v € V(G), for any positive integer m
we denote N™(v,G) (or simply N™(v)) the set of vertices of distance at
most m from v in G, excluding v itself. A vertex v € V(G) is N™-locally
connected if N™(v) induces a connected subgraph of G; and G is N™-locally
connected if every vertex v € V(G) is N™-locally connected.

192



Conjecture 1.3 (Li, [6]) Every 3-connected, N2-locally connected claw-
free graph is hamiltonian.

The purpose of this note is to investigate whether Conjecture 1.3 is
true. More precisely, we want to investigate whether such graphs can be
hamiltonian, and if not, how close they are to being hamiltonian. We shall
give a counterexample to Conjecture 1.3 in Section 2.

A graph is eulerian if it is connected and every vertex has even degree.
Note that the graph K; is also eulerian. An eulerian subgraph C of G is
called a dominating eulerian subgraph of G if E(G—V(C)) = 0. A factor of
a graph G is a spanning subgraph of G. Let H be a factor of G. Then H is
an even factor of G if every vertex of H has even degree; H is a connected
factor if H is a connected graph; H is an [a, b]-factor, for integers a < b, if
for every vertex v € V(H), a < dy(v) < b. A connected even factor is also
called a spanning eulerian subgraph, and a graph that admits a connected
even factor is a supereulerian graph, and a connected [2, 2]-factor of a graph
G is a hamiltonian cycle of G.

Our main results of this note are the following two theorems, whose

proofs will be given in Section 3.

Theorem 1.4 Every connected N%-locally connected claw-free graph with
at least three vertices has a connected even (2,4]-factor.

Theorem 1.5 Every connected N3-locally connected clow-free graph with
minimum degree at least three has a connected even (2, 4]-factor.

Theorem 1.5 has an immediate consequence: every 3-edge-connected
N3-locally connected claw-free graph has a connected even (2, 4]-factor,
which also shows that the graph satisfying the condition of Conjecture 1.3
has a connected even (2, 4]-factor.
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2 Counterexamples

In this section, our main aim is to give a counterexample to Conjecture 1.3.

The line graph of a graph G, denote by L(G), has E(G) as its vertex
set, where two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent. The following result by Harary and Nash-Williams
(4] is well known.

Theorem 2.1 (Harary and Nash-Williams [4]) Let G be a graph with at
least three edges. Then the line graph L(G) is hamiltonian if and only if G
has o dominating eulerian subgraph.

We now give a counterexample to Conjecture 1.3 as follows: Let Py
denote the Petersen graph. For an integer k > 0 and let Pyo(k) denote the
graph obtained from Pjo by adding k pendant edges at each vertex of Pyo.
Let G(k) = L(Pio(k)) be the line graph of Pio(k). For an example when
k = 3 see Figure 2.

Py
Figure 2 The Petersen graph Pjo and Pio(3)

By Theorem 2.1, G(k) does not have a Hamilton cycle. On the other
hand, we shall check that each G(k) is claw-free 3-connected (hence 3-edge-
connected) and N2-locally connected. Since line graphs are claw-free, G(k)
must also be claw-free. Since Pig(k) does not have an edge cut with size
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less than 3 whose deleting will produces two components containing edges,
the connectivity of G(k) is at least 3. It remains to check that each G(k)
is N2-locally connected.

We shall use the notation in Figure 2 to show that G(k) is locally
N2-connected, by the symmetry of the Petersen graph, it suffices to show
that both vertices e; and e; are locally N2-connected in G(k).

Let v3,v2 and v denote the vertices in Pig(k) that are incident with
both e; and ez, both e; and eg, and both e3 and ez, respectively. For each
vertex v € V(Pyo(k)), let K(v) denote the complete graph in G(k) induced
by the edge incident with v in Pjo(k).

Since e; is a pendant edge in Pig(k), it lies in a complete subgraph
K(v) of G(k) containing ey, e3, e4. Any vertices that are of distance 2 from
e; in G(k) must be a vertex adjacent to one of ey, e3 and e4. Therefore, e;
is a locally N%-connected vertex in G(k), see Figure 3.

€
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Figure 3 An illustration of the proof that e; is locally N2-connected in G(k)

In G(k), ez is in the intersection of two complete subgraphs K (vo)
and K (v3). Every vertex of distance 2 in G(k) to e; must be adjacent to a
vertex in {es, €4, €5, ¢6}. To show that e is locally N2-connected in G(k), it
suffices to show that G(k) has a path P connecting the complete subgraph
K (v2) — ez and the complete subgraph K(v3) — eg, such that all vertices
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in V(P) are of distance 2 from ez in G(k). Note that P = eg, €11, 9,4 is
such a path in G(k), and so e is locally N2-connected.

3 Proofs of main results
We start with the following lemma which is a special case of a result in [8].

Lemma 3.1 Let G be a K, 3-free graph. If G has a connected even factor
H, then G has a connected [2,4]-factor.

Proof. Let G be a supereulerian K s-free graph and F a connected
even factor of G with the maximum degree A(F), and n(G, F, A) the num-
ber of vertices in F' with maximum degree A(F) = A. Without loss of
generality assume that F is the one with n(G, F, A) minimum among all
such connected even factors. Then we claim that A(F) < 4, ie., Fisa
connected even [2, 4]-factor. Suppose, otherwise, A(F) > 6. Let w be a
vertex of degree dp(w) = A(F). Then F has at least 3 edge-disjoint cy-
cles C;,C3,Cs with a common vertex w, since F' is an even factor. Let
U = {u1,v1,u2,v2,u3,v3} C Np(w) such that {wu;, wv;} C E(C;) for each
i (1 € < 3). Then we have the following fact.

Claim 1. For any pair of vertices z; € {u;,v;} and z; € {u;,v;}, we
have z;z; ¢ E(G) except that {z;z;,zjw,wz;} is an edge cut set of F, and
in the ezceptional case, exactly one of {zizj,zjw} and {z;T; z;w} is an
edge cut set of F.

Proof of Claim 1. Suppose, otherwise, there exists a pair of vertices
z; € {u;,v;} and z; € {uj,v;} such that either z;z; € E(G) \ E(F) or
{z:z, zjw, wz;} is not an edge cut set of F and then z;z; € E(F). Thus

F' = F + ({ziz;} N (B(G) \ E(F))) — ({zizj, zjw, wz;} 0 E(F))

is a connected even factor and n(G, F’, A) = n(G, F, A)—1, a contradiction.
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By the choice of z; and z;, we deduce that if {z;z;,z;w, z;w} is an
edge cut set of F' then exactly one of {z;z;,z;w} and {z;z;,z;w} is an
edge cut set of F. This completes the proof of Claim 1.

Claim 2. There exist three vertices in U as a verter set X with

E(G[X]) =0. (1)

Proof of Claim 2. If {y:y;, y;w, wy:} is not an edge cut set of F for any
pair of vertices y; € {u;,v;} and y; € {u;,v;}, then by Claim 1, y;y; & E(G)
for any {i,5} C {1,2,...,k}. Then any vertex set X = {r;,z2,z3} in U
with z; € {u;,v;} satisfies (1).

It remains the case that there exists a pair of vertices y; € {ui,vi}
and y; € {uj,v;}, say, ¥; = u; and y; = ug, such that {ujus, ugw,wu;}
is an edge cut set of F, then, by Claim 1, we can assume, without loss of
generality, that {ujus, ujw} is an edge cut set of F. Now let C| = upujwuy
and C; = G[(E(C1)UE(C2)) \ {uiuz, uow, wu }]. If {2122, 22w, w2 } is not
an edges cut set of F' for any pair of vertices z; € {v;,v2} and 23 € {us, v3},
then, by Claim 1, 2123 ¢ E(G). We choose a vertex set X = {z1,23,u;}
with (1), where z; € {v;,v2} and 23 € {u3,v3}. In the remained case that
there exists a pair of vertices z; € {v1,v2} and z3 € {us,v3} such that
{2123, 23w, wz, } is an edge cut set of F, then, by Claim 1, we can assume,
without loss of generality, that {2;z3,z;w} is an edge cut set of F. Now
let Cy = z123wz; and Cj = G[(E(C4) U E(C3)) \ {2123, 23w, wz, }]. Then
X = {u1, 21,23} where z3 € N(w) N V(C3), is a vertex set with (1), which
completes the proof of Claim 2.

By Claim 2, there exists a set of three vertices X C U, such that the in-
duced subgraph G[{w} |J X] = K 3 in G which contradicts the assumption
of Lemma 3.1. This completes the proof of Lemma 3.1. O

We need the following results. Theorem 3.2 was first proved by Paulraja,
and later improved by Catlin and Lai.

Theorem 3.2 (Paulraja, [10], and Catlin and Lai, [3]) Let G be a con-

197



nected clow-free graph. If every edge of G lies in a cycle of length at most
5, then G 1is supereulerian.

Theorem 3.3 (Catlin and Lai, [3]) Let G be a 2-connected claw-free graph
with 6(G) > 3. If every edge of G lies in a cycle of length at most 7, then

G is supereulerian.

Theorem 3.4 below shows a property of a connected N*-locally con-

nected graph.

Theorem 3.4 Let k be an positive integer and G be an connected N*-
locally connected graph containing at least two edges. Then every edge lies
in a cycle of length at most 2k + 1.

Proof. By contradiction, suppose that there is an edge e = uv in G
which does not lie in a cycle of length at most 2k + 1. Let N;(z) denote the
set of vertices that are of distance i from z in G for any vertex z € V(G),
and N;(z \ y) the set of vertices in Nj(x) that have a path, of length ¢ from
z, not containing y, for any edge zy € E(G).

If N;(u\v) N Nj(v\u) # 0@ for some 1 < i,j < k, then there is a
cycle of length i + j + 1 < 2k + 1 containing e, a contradiction. Thus
Ni(u\v) N Nj(v\ u) =0 for any 1 < i,j < k, which contradicts the fact
that u and v are N*-locally connected. Therefore, we complete the proof
of Theorem 3.4. O

Now we can give the proof of our main results.

Proof of Theorem 1.4. It follows from Lemma 3.1, Theorems 3.2
and 3.4.0

Proof of Theorem 1.5. If there is a cut vertex v in G, then v is not
N3.locally connected vertex. It implies the fact that every connected N 3.
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locally connected graph is 2-connected. Now the proof of Theorem 1.5
follows from Lemma 3.1, Theorems 3.3 and 3.4.0
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