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Abstract

Let P(G, A) denote the chromatic polynomial of a graph G. Two
graphs G and H are chromatically equivalent, written G ~ H, if
P(G,\) = P(H,)). A graph G is chromatically unique written
x—unique, if for any graph H, G ~ H implies that G is isomorphic
with H. In this paper we prove that the graph 6(ai,as,...,a¢) is
x—unique for exactly two distinct values of a,az,...,as.
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1 Introduction

The graphs that we consider here are finite and simple. Let G be a graph
and A € N. A mapping f : V(G) — {1,2,...,A} is a A—colourings of
G if f(u) # f(v) whenever the vertices u and v are adjacent in G. Two
A—colourings f and g of G are regarded as distinct if f(z) # g(z) for
some vertex « in G. The number of distinct A—colourings of G is called the
chromatic polynomial of G and denoted by P(G, A). Two graphs G and H
are said to be chromatically equivalent, and we write G ~ H, if P(G,\) =
P(H,)). A graph G is chromatically unique (or simply x — unique) if
G 2 H for any graph H such that G ~ H.

By subdivision we mean the operation of replacing an edge of a graph by
a path. If a graph H can be derived from G by a sequence of subdivisions,
we say H is a subdivision of G. For each positive integer k, the graph G(h)
obtained from G by replacing each edge of G with a path of length & is
called the h-uniform subdivision of G.
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A chain in a graph G is a path in G every internal vertex of which has
degree 2 in G. The operation that replaces a u — v chain by a an edge wv
is called chain-contraction. By contracting all maximal chains of a graph
G, we arrive at multigraph M(G). Two graphs G and H are homeomorphic
if M(G) = M(H). If G is homeomorphic to H we also say G is a H-
homeomorph.

For each integer k > 2, let 6 be the multigraph with two vertices and k
edges. Any subdivision of 8, is called multi-bridge graph or k-bridge graph.
We denote 8(a1, a2, ..., ax) Where aj,a2,...,ax € Nand a; < a2 < ... < g
to be the graph obtained by replacing the edges of 8; by paths of length
ai,as, ..., a respectively. Li [8] proved that the graph 6(ai,as,...,as) is
x—unique for exactly two distinct values of a3, az, ...,as. In this paper we
prove the chromatic uniqueness of a new family of 6-bridge graphs.

2 Auxiliary Results

In this section we cite some results use in the sequel.

A 2-bridge graph is simply a cycle, which is x—unique. Chao and White-
head Jr. [2], showed that every 3-bridge graph 6(1, a2, a3) called a theta
graph is x—unique. Loerinc [10] extended the above result to all 3-bridge
graphs also called generalized 6 — graph. Chen et al. [3] proved that the
4-bridge graph 8(a,, a2, as,aq) is x—unique if and only if for any ¢ > 2,
(a1, a2,a3,a4) # (2,¢,¢+ 1,c+2). Bao and Chen [1] showed that every
5-bridge graph is x—unique if its shortest maximal chains of length greater
than 3. The above result is a special case of general result due to Xu et al.
(11].

Theorem 1 ([11]) For k > 4, 6(a1,az, ..., ar) i x—unique ifk—1<a; <
a2 < -+ < Gk

Li and Wei [9) established that the 5-bridge graph 6(2,2,2,4a,b) is
x—unique if and only if (a,b) # (3,4). Ye [12] extended the above re-
sult to any k-bridge graph 6(2,2,:--,2,a,b) with b > a > 3 and k > 5.
Xu et al. [11] showed that any h-uniform subdivision of 6 is x—unique, as
states in the following theorem:

Theorem 2 ([11]) For k > 2, the graph 0;(h) is x—unique.

The above result was proved independently by Dong [4], Koh and Teo
[7], and Xu et al. {11]. Dong et al. [6] proved the following theorem.

Theorem 3 ([6]) If2 < ay <az <--- < ax < a1+ a,where k > 3, then
the graph 6(a1, az, ..., ax) is x—unique.
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Let k,a1,4a2,...,ax € N, and G = 6(a1, a2, ..., ax). Then (see [5]):

P(G,\) = m_ll:ll:( _ 1)ai+1 + (_l)a.'+1()\ - 1))

+ FI:TH((,\ — 1%+ (=) (A - 1)).
i=1
Let A =1 — z, then:

( 1)61+82+---+ak+1

k k
P(G,1-z)= — T (xH(xaf -1)- H(xas — .'L‘))

i—l i=1
_1)e(G)+1 5 .
“a _(m)e)(G)—u(G)-{-l (mH(l' 1) - l:];(m - 27))

where ¢(G) = Za, and v(G) = Za, —k + 2. Also they defined Q(G, z)

i=1
for any graph G a,nd real number z as:

Q(G,z) = (1) (1 - ) —(OH1P(G,1 - z),

and they got the following results:
Theorem 4 ([6]) For any k, a1, as,...,ax € N,

k k
Q(6(a1, a3, ..., ax), @) = [ [(=* — 1) - [J (=™ - 2)

i=1 =1

Theorem 5 ([6]) For any graphs G and H,
(i) if H ~ G, then Q(H, z) = Q(G,z);
(ii) if Q(H,z) = Q(G, ) and v(H) = v(G), then H ~ G.

Lemma 1 (/6]) Suppose that 6(ai,as, ..., ar) ~ 8(by, bz, ..., bx), where k >
3,201 a2 ...Lar and2<b; <by <...<bi. Thena; = b; for all
i=1,2,..,k

Dong et al. [6] denote g¢(G1, Ga, ..., Gk) to be the collection of all edge-
gluing of all G, Gy, ..., Gk, where k > 2 and ¢(G;) > 1 for all i, and then
they got the following Lemma:

Lemma 2 ([6]) Let H ~ 6(a,, a, ..., ax), where k > 3 and a; > 2 for alli.
Then one of the following is true:
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(i) H = 0(ay, ag, ..., ak);
(3) H € ge(8(b1,b2,...,b), Coppy+1y s Chys1), where 3 <t < k—1 and
b; >2 foralli=1,2,..,k.

Theorem 6 ([6]) Let k,t,b1,b2,...,0p € N with3 <t < k-1 and b; > 2
foralli=1,2,... k. IfHe ge(O(bl, b, ..., be), Cb.+1+1; vors Chyt1), then

k t k
@, 2) =] [ -1 - [ - =) ] -

i=1 i=1 i=t+1
It is well known (see [7]) that:

Lemma 3 ([7]) If G ~ H, then

(i) v(G) = v(H);

(1) e(G) = e(H);

(#i1) g(G) = g(H) and

(iv) G and H have the same number of shortest cycles.

where v(G), e(G) and g(G) denote number of vertices, number of edges and
the girth of the graph G.

3 Results

In this section we prove a new result on chromatic uniqueness of 6-bridge
graphs.

Lemma 4 Let H € g(0(b1, b2, ..., bt), Cb, iy 41y -y Cbyt1). Then the mazi-
mum number of cycles of size g (the girth of H) is (;) +k-t.

Proof. Note that the maximum number of cycles of order g in
8(b1, b, ..., be) is (Z), and we can get another k—t cycles of order g from cy-
cles Cp,,,+1;Ch,ya+1, -+ Cor41. We claim that H does not contain another
cycles of order g except the possible (;) +k —t cycles above. If b;+b; = g
forl<i<tandt+1<j<k, then b; +1 < g because b; > 2, and this is
not possiple. Similarly, we can show that b; +b; >gfort+1<i<j<k.
Therefore, the maximum number of cycles of order g is (}) +k—t. m

Lemma 5 The 6-bridge graph 0(a,a,a,a,a,b), where 2 < a < b is
X —unique.

Proof. Let G = 4(a,a,a,aqa,aq,b), where 2< a < b. If b < 2a, then by
Theorem 3, G is x—unique. Suppose that H ~ G and b > 2a. Then by
Lemmas 1 and 2, we need only to consider three cases.
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Case 1 H € ge(g(bly b2$ b3)1 Cb4+l’ Cbs-l-l, Cbs+1)) where 2 < bl < b2 < ba,
2 < by, bs, bg and Sa+b = by +by+-+-+bs. By Lemma 3, g(G) = g(H) = 2a.
By Lemma 4, the maximum number of cycles of order 2a in H is six. But
G contains 10 cycles of order 2a. This is a contradiction by Lemma 3.

Case 2 H € ge(8(b1, b2, b3, bs), Cost1, Che+1), where 2 < by < by < b3 <
ba, 2 < b5, bs and 5a+b = by +by++--+b. By Lemma 3, g(G) = g(H) = 2a.
By Lemma 4, the maximum number of cycles of order 2a in H is eight. But
G contains 10 cycles of order 2a. This is a contradiction by Lemma 3.

Case 3 H € ge(6(b1, b2, b, by, bs), Cpg+1), Where 2 < by < by < b3 < by <
bs, 2 < bg and 5a+b = by +by +-- -+ bg. We have to consider two subcases:

Subcase 3.1 bs + 1 = 2a. By Lemma 3, G and H have the same number
of shortest cycles. Since G has 10 cycles of order 2a, H must have 10 cycles
of the same order also. Therefore b; +b; = 2a, for 1 <i < j < 5 and
(2,7) # (4,5). Since by + b; = 2a for i=2,3,4,5, we have by = b3 = b; = bs.
Since by +b3 = 2a, by = b3 = a. Hence we have b; = a, foreachi = 1,2, ...,5.
There are 11 cycles of size 2a in H and only 10 cycles of size 2a in G. This
is a contradiction by Lemma 3.

Subcase 3.2 bs + 1 # 2a. By Lemma 3, G and H have the same number
of shortest cycles. Since G has 10 cycles of order 2a, H must have 10 cycles
of the same order also. Therefore b; +b; = 2a, for 1 <i < j < 5. Since
b1 +b; = 2a, for i = 2, 3,4, 5, we have by = b3 = by = bs. Since by +b3 = 2a,
we have by = b3 = a. Hence we have b; = a, for each i = 1,2, ...,5. But
S5a+b = by +by+---+bg, give us bg = b. By Theorem 5, Q(G, z) = Q(H, z).
By using Theorems 4 and 6 and after cancel the same terms we get z = 1,
which is impossible. m

Lemma 6 The 6-bridge graph 0(a,a,a,a,b,b), 2 < a < b is x—unique.

Proof. Let G = #(a,aq,aqa,aq,b,b) for 2< a < b. By Theorems 1 and 3, we
can assume 2 < a < 4 and b > 2a. Hence the number of cycles of order 2a
in G is six. By Lemmas 1 and 2, we need only to consider three cases.

Case 1 H € g.(0(b1,b2,b3), Cb,+1,Cbs+1,Che+1) Where 2 < b; < by < bg,
2 < by, bs, bg and 4a+2b = by +by+--+bg. By Lemma 3, g(G) = g(H) = 2a.
By Lemma 4, the maximum number of cycles of order 2a in H is six. This
means by = by = b3 = a and by = bs = bg = 2a—1. Now since e(G) = e(H),
we have 2b = 5a — 3. Since b is a positive integer and a < 4, we have a = 3.
Hence b = 6, and we have
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Q(G,z) =z + z* + z° — 3z* - 325 — 42° + 42° + 42° + 2210 + 421!
+ 8212 - 10213 — 1122 + 2% + 42'® — 4217 + 621° — £

Q(H,z) =z + 22 — 3z% — 325 — 327 + 102° + 37! + 32’2 - 1251

— 16 _ 1T L gpl9_ g2
Clearly, Q(G, z) # Q(H, z) which contradicts Theorem 5

Case 2 H € g(0(b1, b2, b3, bs), Cpss1, Che+1) Where 2 < by < by < b3 < by,
2 < bs,bs and 4a + 2b=b; + by + - - - + bs. We consider three subcases.
Subcase 2.1 @ = 2. By Lemma 3, g(G) = g(H) = 4 and G and H have
the same number of cycles of order 4. Therefore by = by = b3 = by = 2,
bs, be > 4, bs + bg = 2b. Since G ~ H, Q(G,z) = Q(H, z). After cancelling
the equal terms, we have Q1(G, z) = Q1(H, ) where

@1(G,z) =228 4227 — 328 + 2% + 62410 — 2220 4 623D _ 124840
_ 4x5+b + 8z7+b _ 2$1+b

Qi(H,z) = — z* — zbs+2 4 323+bs _ g2+be _ g 5+be 4 355 + 3o3+bs
+ zb5+8 _ ml-i-be _ x1+bs + 4$4+be - 6x5+65 + 4x4+b5 + zbs+8

The term —z* in Q;(H,z) can not be cancelled in Q,(H,z). It must be
cancelled in Q;(G,z). Since b > 4, the term —z* can not be cancelled in
Q1(G, ) also. So the term —z* found in Q;(H, z) but it is not in Q4(G, z).
Therefore this is not possible.

Subcase 2.2 a = 3. By Lemma 3, g(G) = g(H) = 6 and G and H have
the same number of cycles of order 6. Therefore b; = by = b3 = bg = 3, and
bs,bs > 6, bs + bg = 2b. Since G ~ H, Q(G,z) = Q(H, z). After cancelling
the equal terms, we have Q,(G, z) = Q,(H, =) where

QI(G,:c)=—4a:6+6:z:8+6:1:9—4:z:l°—4x“+m13—2:1:2""’—23:1"'"
~12 .’c7+b+8x6+b— 12 x8+b+8x1°+b—2x3+b+8$5+b

QI(H, .T) =—gt_ 5 + 477 — 12 _ g2+bs _ gltbe + p12+bs _ 3+bs
_ x3+be + $12+b° _ 6m7+ba + 4z5+be + 4$4+b6 + 4$5+b"’

— 6zt 4 pitbs _ p2+bs _ pltbs

The term —z* in @, (H,z) can not be cancelled in Q,(H,z). It must be
cancelled in Q1(G,z). Since b > 6, the term —z* can not be cancelled in
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Q1(G, z) also. So this term found in Q1(H,z) but it is not in Q(G, z).
Thus Q,(G, z) # Q1(H, z) a contradiction by Theorem 5.

Subcase 2.3 a = 4. By Lemma 3, g(G) = g(H) = 8 and G and H have
the same number of cycles of order 8. Therefore b; = by = b3 = by = 4,
bs, bg > 8, bs + bs = 2b. Since G ~ H, Q(G,z) = Q(H, z). After cancelling
the equal terms, we have Q1 (G, z) = Q1(H, ) where

Qi(G,z) =2 — 42" —42° + 6210+ 621 — 4213 _ 4214 4 £17 4 g O+D
+ 821340 L 85T+ 4 8B+ _ 19510+ _ 19 59+b _ 9 3+b

_ 2I1+b — 2$4+b _ 2$2+b

(N (H, :L') = — g8 — 16 _ pl+bs _ ;3+bs + 16+bs + 4 28+be _ g p9+0s
+ p16+be + 4 25+ + 4 5tbs + 4 g8Fbs _ p2+bs _ g 9+be
— gltbs _ 2+4bs _ ,.3+bs

Since b > 8, the term z* can not be cancelled in Q;(G, z). It must be
cancelled in Q;(H, z). Also, since bs, bg > 8, this term can not be cancelled
in @:1(H,z). Thus Q:1(G,z) # Q1(H, z) a contradiction by Theorem 5.

Case 3 H € ge(0(b1, b, bs, by, bs), Che+1) Where 2 < by < by < bg < by <
bs,3<bsgandda+2b=1b; +by+ -+ bg.

Claim. bs # 2a — 1. Let bg = 2a — 1. We have g(G) = g(H) = 2a. Since
we have six cycles of order 2a in G, by Lemma 3 we have also the same
number of cycles of order 2a in H. If b; = by = b3 = a, then the number of
cycles of order 2a is four. If b; = by = bs = by = a, then the number of
cycles of order 2a is seven. In Both cases, G and H have different numbers
of shortest cycles. This is a contradiction by Lemma 3 and the claim is
proved.

Now we need to consider three subcases:
Subcase 3.1 a = 2. We have ¢g(G) = g(H) = 4. By Lemma 4, H must
have six cycles of order 4. Since bg # 3 by the above Claim, we have
by = by = b3 = by = 2. Since G ~ H, Q(G,z) = Q(H,z). After cancelling
the equal terms, we have Q(G, z) = Q1(H, z) where

Q1(G,z) =2® + 62 — 44® + 2% + 627 + 82THP — 22D 4 g3
- 4$5+b _ 21,1-}-6 - 12$6+b
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Ql (H, (B) =4 .’1:6 - $2+b5 + 3x3+55 + $8+b5 - x1+bs _ xbe-l-l + 3xbe+3
+3gbetd — ghot2 | g gbotT _ G5 _ g ghetS 4 4 gtths

-6 wb6+6

Note that bs > 3 (since bs > by = 2 and bs # 2 because if bs = 2, then the
number of shortest cycles of order 4 in G is six but this number is 10 in H
which is a contradiction by Lemma 3) and bs > 4 (since bg +1 > 2a = 4
and bg # 2a~—1 = 3 by our claim). Since b5 +bg = 2band bs > 3, b > 4, we
have b > 4. The term z° found in Q1(G, =) but it is not found in @, (H, z).
To cancel this term, we must have b = 4. Since bs + bs = 8 and bs > 3,
bg > 4, we have either (i) bs = 3 and bg = 5 or (ii) bs = bg = 4.

Subcase 3.1.1 b; = 3 and bg = 5. After cancelling the same term we
obtain Q2(G, z) = Q2(H, z) where

Q2(G,z) =927 +52° — 1020 + 1321
Q2(H,z) = —-z* +82% +62° +42'2

Clearly, Q2(G, z) # Q2(H, z) which contradicts Theorem 5
Subcase 3.1.2 bs = bg = 4. After cancelling the same term we obtain

Q1(G,z) = Q3(H, z) where
Qs3(G,z)=62" - 620 + 4z
Qs(H,z)=—2°+ 425 4+52° - 527 + z!?
Clearly, Q3(G, z) # Qs(H,z) which contradicts Theorem 5
Subcase 3.2 a = 3. We have g(G) = g(H) = 6. By Lemma 3, H must
have six cycles of order 6. Since bg # 5 by the above Claim, b; = by = b3 =

bs = 3. Since G ~ H, Q(G, z) = Q(H, z). After cancelling the equal terms,
we have Q; (G, z) = Q.(H, =) where

Q1(G,z) =62° — 4z + 213 - 2 z3+b 4 8 10+ | g6+b _ 1948+
-12 $7+b + 8$5+b -9 zl'l'b + 6 z4+b _ 2$2+b

QI(H’ x) = — 5 + bee+4 _ 6$7+bs _ 6xba+7 _ .’Bb6+2 _ .'51+b5 _ xbe+3
— p3+bs _ Zz2+bs + 4$5+b"' + 4727 — ghet8 + 4 gbst6 + pl2+bs

+ 4xbe+10 + 4x4+b5 + 4xbe+5 _ xbe+l

Note that bs > 4 (since bs > by = 3 and bs # 3 because if b5 = 3, then the
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number of shortest cycles of order 6 in G is six but this number is 10 in H
which is a contradiction by Lemma 3) and b > 6 (since bg +1 > 2a = 6
and bg # 2a — 1 = 5 by our claim). Since b5 + bg = 2b and b5 > 4, bg > 6,
we have b > 5. Since bs > 4, bg > 6, the term —z° in @, (H, ) can not be
cancelled in Q;(H, ). It must be cancelled in Q:(G, ). Also, since b > 5,
this term can not be cancelled in Q1(G,z). Thus Q:(G,z) # Q:(H,z) a
contradiction by Theorem 5.

Subcase 3.3 a = 4. We have g(G) = g(H) = 8. By Lemma 4, H must
have six cycles of order 8. Since bg # 7 by the above Claim, by = by = b3 =
by = 4. Since G ~ H, Q(G, z) = Q(H,xz). After cancelling the equal terms,
we have Q(G,z) = Q,(H, z) where

Q1(G,z) = —428 + 621 —4zM 4 217 — 21+ _ 9 g3+b _ g gd+b _ g p2+4b
86+ _ 19 10+b | g THb _ 19,945 4 g 13+b o g 5+b

Qu(H, ) = — 25 + 425F0s 4 405 _ g gbe+9 _ ghetd _ g2+bs _ g pbet10
+ 4 gbet6 _ ghetl _ p14bs 4 p16+4bs _ 1 3+bs _ g o 9+bs 4 g pbetT

4 4 6Hbs _ phet2 _ nbed3 4 4 pbe+13

Note that b5 > 5 (since bs > by = 4 and b5 # 4 because if b5 = 4, then the
number of shortest cycles of order 8 in G is six but this number is 10 in H
which is a contradiction by Lemma 3) and bs > 8 (since bg +1 > 202 = 8
and bg # 2a — 1 = 7 by our claim). Since bs + bg = 2b and bs > 5, bg > 8,
we have b > 7. Since bs > 5, bg > 8, the term ~z% in Q;(H, z) can not be
cancelled in Q;(H, ). It must be cancelled in Q,(G, z). Also, since b > 7,
this term can not be cancelled in @1(G,z). Thus @:(G,z) # Q:1(H,z) a
contradiction by Theorem 5. Hence G is x—unique m

Lemma 7 The 6-bridge graph 6(a,a,a,b,b,b), 2 < a < b is x—unique.
Proof. The proof is similar to the proof of Lemma 6. =
Lemma 8 The 6-bridge graph 6(a,a,b,b,b,b), 2 < a < b is x—unique.
Proof. The proof is similar to the proof of Lemma 6. m
Lemma 9 The 6-bridge graph 6(a,b,b,b,b,b), 2 < a < b is y—unique.
Proof. Since b < @ + b, from Theorem 3, the graph 6(a,b,b,b,b,b),
2<a<bis x—unique. m

By Lemmas 5 to 9, we have the following theorem.

Theorem 7 A 6-bridge graph 6(a1,az,...,as) is x—unique if the positive
integers ai, az, ..., ag assume ezactly two distinct values.
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