A note on the eigenvalues of graphs *

Lihua Feng, Guihai Yu
School of Mathematics, Shandong Institute of Business and Technology
191 Binhaizhong Road, Yantai, Shandong, P.R. China, 264005.
Email: fenglh@163.com; lihuafeng099099@yahoo.com

Abstract

In this note, we present some upper bounds for the kth
largest eigenvalue of the adjacency matrix as well as the Lapla-
cian matrix of graphs. Special attention is paid to the Lapla-
cian matrix of trees.
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1 Introduction

In this note, we only consider undirected simple graphs without loops
and multiple edges. Let G = (V, E) be a graph with n vertices and m
edges. The degree of a vertex v € V is denoted by d,, and the degree
sequence of G is written in non-increasing order by d; > dy > --- >
dn. The adjacency matrix of G is A(G) = (ay;), where a;; = 1 if two
vertices v; and v; are adjacent and a;; = 0 otherwise. The degree
diagonal matrix of G is denoted by D(G) = diag(d;,ds,--,dy),
then L(G) = D(G) — A(G) is called the Laplacian matriz of G. The
eigenvalues \;(G), p:(G), or just A, i, 1 < i < n, of A(G), L(G) are
ordered by
A1 2 A2 2 2 Ay,
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respectively. For any n x n matrix M, we also use A;(M) to denote
its eigenvalues.

For the adjacency matrix A(G) of a connected graph G, from
the Perron-Frobenius theorem, there is a unique positive eigenvector
corresponding to A; whose entries sum to 1, we call this vector the
Perron vector. For more results on graph theory, spectral radius of
graphs, Laplacian eigenvalues of graphs, we refer the reader to see
[1], [3], [12] and the references therein.

Up to now, many researchers studied the kth largest eigenvalues
of A(G), see [2], [8], [14], [15], [18] for details. But for the kth largest
eigenvalue of L(G), there are only few results. Guo (7] and Zhang,
Li [17] studied pg for trees. Zhang and Li [16] investigated pu for
arbitrary graphs. In this note, we present a new bound for A and
give some applications further.

2 Lemmas and results

Lemma 2.1 [6] Let T be a tree and L be its line graph, then
pi(T) =2+ Ae(Lt), for k=12,---,n.

Lemma 2.2 [1}] Let G be a graph on n vertices, then

n—3 : ;
o=2, if nis odd;
X2(G) < { 2-1, if niseven.

By using Lemma 2.2, Zhang [17] obtained an upper bound for p2 of
a tree.

Theorem 2.3 [17] Let T' be a tree of order n, then
pa(T) < [3).
The bound is sharp for n is even.
Lemma 2.4 [15] Let G be a connected graph on n vertices, then
M(G) < r%] ~1 for k< g
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Theorem 2.5 Let T be a tree of order n, then

-1 -
(@) S [P2=1+1 for k<P

Proof. Consider the line graph of T, by Lemma 2.1 and Lemma 2.4,
we can get the result. Il

Lemma 2.6 (Courant-Fischer) For a real symmetric n x n matriz
M with eigenvalues Ay > Ao > -++ > A, we have

. oMz
e = min max :
w1, w2, Wk ERN ”J-"’l"”il;(')"‘"n—k: Itz
T

Next, we present the main result of this paper.

Theorem 2.7 Let G be a simple graph with degree sequence di >
dg 2 :+- 2 dn, then A (G) < di. The equality holds if and only if G
has at least k connected components, and each of which is dy. regular.

Proof. The proof the theorem borrows ideas from the proof of the
well known Weyl’s inequality (see, for example [10]). We present the
details for completeness. For any k = 1,2,---,n — 1, by Lemma 2.6,
we have

M(D) = M(D—A+ A)

. xt(D —A+ Az
= min :
W1, W2, Wy ERM slwy wy, s wy s xtx
z#0
, rtAz (D - A)z
= min m ( — + ; )
W1,W2,, Wp -k ERP zlwpwa,wp ki \ ly b i
z#0
t
. Tt Az
> min max (—— + A (D — A) )
iz

W1, W2, Wk ERN 3J-‘”1-‘”2;6‘"“n—k;
= A(A)+ (D - A)
It is well known that A,(D — A) = 0, so we can get the result.
If the equality holds, that is A(G) = di, then the inequality

in the above should be equality. So the all one vector 1 as the
eigenvector of A\,(D — A) = u,(L(G)) = 0 is also the eigenvector of
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M(D(G)) and M(A(G)) for 1 < k < n—1. So from A(G)1 = dil,
G must be d = dj, regular.

If £ = 1, then it is well known that G is d = d; regular.

Now, we consider the case k > 2. Note that for a symmetric
real matrix, the eigenvectors of different eigenvalues are orthogonal.
If G is connected, from the Perron-Frobenius theorem, we know the
Perron vector is positive, which can not be orthogonal to 1, a con-
tradiction. Hence G must be disconnected. If G has ! connected
components each of which is d regular and ! < k, then the eigen-
vector of the (I + 1)th largest eigenvalue must have negative entries.
Since I + 1 < k, the eigenvector corresponding to Ay must have neg-
ative entries since it must be orthogonal to 1, this contradicts to the
fact that 1 is the eigenvector of A\x. Hence G has at least k compo-
nents and each of which is d regular. Conversely, it is easy to check
the result holds. H

Corollary 2.8 Let G be a simple graph of order n with degree se-
quence dy > dp > -+ > dy, then A\1(G) < d1, A2(G) < ds.

In the following, for a graph G, when we say the degree of an edge
e = uv € E(G), we mean it is the degree sum of the endpoints of e.

Lemma 2.9 [11] Let G be a connected graph, then the line graph Lg
of G is reqular if and only if G is regular or semiregular bipartite.

Proof. We present the proof here for completeness. Suppose Lg is
regular, then for any edge e = uv € E(G), the degree of e in L¢ is
dy + d, — 2. For any two adjacent edges e; = uv, ez = uw in E(G),
we have dy, + d, — 2 = dy + dy, — 2. Hence d,, = dy,. If G contains an
odd cycle, since G is connected, so all vertices in G have the same
degree. If G does not contain any odd cycle, then G is bipartite and
the vertices in the same partition set have equal degree. So we get
the result. Conversely, if G is regular or semiregular bipartite, it is
easy to see Lg is regular. B

Next, we present some applications of Theorem 2.7.

Theorem 2.10 Let T be a forest, then
Flk(T) <d,+d,,
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where wv € E(T) and dy, + d,, is the kth largest degree of edges of T'.
The equality holds if and only if T has at least k components each of
which is a star on dy, + d, — 1 vertices.

Proof. Consider its line graph Lz of T, for an edge e = uv € E(T),
the degree of e as a vertex in Lt is dy + d, — 2. Together with
Lemma 2.1 and Theorem 2.7, we get the result. The equality case
follows from Theorem 2.7 and Lemma 2.9, since the star is the only
connected semiregular bipartite graph for trees. ll

Corollary 2.11 Let T be a tree of order n, then

< .
m(T) < Dax {du +dy}
As another application of Theorem 2.7, we consider the following
problem ([5], [13]): Does it hold for every graph that A\; + Ay < n?
From Theorem 2.7, we have

Theorem 2.12 Let G be a graph of order n with degree sequence
dy>2ds > - >dy, then \{ + Ao < d; +ds.

At last, we present a rough upper bound about the above poblem.

Theorem 2.13 Let G be a graph of order n, then A\; + Mg < :%n ~
1.2247n.

Proof. If A2 < 0, then the result is obvious, so we can assume
that A\ > 0. By the result A\; < v2m —n +1 (see [9]), we have
M < VZm —n+1 < v2m. On the other hand, Weyl’s inequalities
imply that Ao(G) + A (G) £ —1. So A2(G)? < A (G)?, where G is
the complement of G. Hence, by the result A; < /m, for 2 < i <mn,
(see [4], page 206, Corollary 2.14), we have

n(n — 1) n?

D) -—m<—2——m.

[n2
M+ A< V2m+ %—m.

225

A2(G)? < M(G)? <

Therefore



Let f(z) = V2z + 4/ "—22 — z, a simple calculation shows that f(z)

attains its maximum when z = 1‘33, and the maximum value is %n,
which implies the result. ll

Note. In [13], the author obtained an upper bound 72§n Unfor-

tunately, its proof is wrong, since he said that ”the value v2m — 2+
z is increasing in z for £ < m”, which should be z < /m.

Acknowledgments: The authors are grateful to the referee for
his or her valuable comments and suggestions which lead to an im-
provement of the original manuscript.
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