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Abstract

The signless r-associated Stirling numbers of the first kind dr(n, k)
counts the number of permutations of the set {1,2,...,n} that have
exactly k cycles, each of which is of length greater than or equal to
T, where r is a fixed positive integer. F. Brenti obtained that the
generating polynomials of the numbers dr(n, k) have only real zeros.
Here we consider the location of zeros of these polynomials.
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1 Introduction

Let [n] denote the set {1,2,...,n}, where n is a positive integer. Let S,, be
the symmetric group on [n] and 7 = w(1)m(2) - - - m(n) € S,. As usual, we
denote by cyc (7) the number of cycles of . For example, the permutation
7 = 315426 € Sg has the cycle decomposition 7 = (1,3,5,2)(4)(6), so
cyc(m) = 3. A fized point in 7 is an index ¢ such that m(i) = i. We say
that 7 is a derangement if = has no fixed points. For a positive integer
7, let D.(n,k) denote the set of all # € S, that have exactly k cycles,
each of which is of length greater than or equal to r. The signless r-
assoctated Stirling numbers of the first kind d,(n, k) counts the number of
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permutations in D.(n,k). The numbers d.(n,k) are often called r — 1-
derangements (see [4, Section 3.2} for details). The set Dr(n + 1,k) may
be seen as a disjoint union of the sets P; and P,, where P represents the
subset of D,(n + 1,k) in which the element n + 1 belongs to a cycle with
more than r elements, and P, represents the subset of D,.(n+1, k) in which
the element n + 1 belongs to a cycle with exactly r elements. Hence the
numbers d,(n, k) satisfy the recurrence

de(n+ 1,k) = nd.(n,k) + (n)r—1d-(n—7+1,k—=1) forn>kr, (1)

with the initial conditions d,(n, k) = 0if n < kr and d.(kr, k) = (kr)!/(k!r¥),
where (n),_ is the falling factorial, i.e., (n)o = 1 and (n)r—1 = n(n —
1):--(n—r+2)forr>2.

Polynomials with only real zeros arise often in combinatorics, algebra,
analysis, geometry, probability and statistics (see Stanley [8] for details).
Let RZ denote the set of real polynomials with only real zeros. Furthermore,
denote by RZ(I) the set of such polynomials all of whose zeros are in the
interval I.

Let

D{(z) = Zd,(n, k)z* forn > 0. (2)
k>0
It is evident that DV(1) = nDSY(1) = n!. Note that di(n, k) is just
the signless Stirling numbers of the first kind ¢(n, k). It is well-known [9,
Proposition 1.3.4 | that
n

Y e(n, k)zt = 2@+ 1)(z +2)--- (@ +n-1).

k=0
Hence the polynomial D,(.l)(x) € RZ[1 — n,0]. Moreover, D,(;l)(:z:) has only
simple real zeros and the zeros of D,(;l)(z) and D,(,l_,)_1 (x) are interlaced.
In the case of r = 2, E. R. Canfield (3] obtained that the polynomials
D (z) € RZ(-00,0).

Remark 1. According to Comtet [5, p. 295], it follows from the results of
Tricomi [10] that the polynomials DY@ (z) have only real nonpositive simple

2eros.
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Using the theory of total positivity (7, Chap. 8, Corollary 3.1], F.
Brenti [2, Corollary 5.9] proved that the polynomial DS (z) € RZ(—00,0).
Recently, M. Béna [1) showed the following result.

Theorem 2. (1, Theorem 3.6] For every positive integer t and every e > 0,
there erists a positive integer N such that if n > N, then D(z) has a
zero x; satisfying the inequality |t + ¢ [< €.

The object of this note is to provide a characterization for the location
of zeros of the polynomials D{"(z).

2 Real Zeros

Using (1), the polynomials D,(,r)(a:) satisfy the recurrence
D)1 (z) = nD{) () + (n)r—12D, 1 (z) forn>r. 3)

By the pigeon-hole principle, we have deg(D{"” (z)) = |n/r] and z =0 is
a simple zero of the polynomials Dy (z) for n > r. Let sgn(c) denote the
sign function of a real number ¢. We can now present the main result of
this note.

Theorem 3. The polynomials D () have only real nonpositive simple
zeros. Moreover, the zeros of D (z) and Df::zl(a:) are interlacing in the
following way. Letn = qr+i and let Dy i(z) = D{ (), where0 <i<r-1.
Let zgi1 < 7,40 <+ < 24,i;q = 0 be the zeros of Dy ;(z). Then

(8) 24,45 < 2q,i41; for0<i<r—-2and1<j<q-1;
(b) zgi;j < 2g—1,i; for0<i<r—landl<j<g-1;
(€) zg-1,r-1;5 < 205541 for 1< j<g-2.

Proof. By definition (2) we have Doo(z) = 1 and Dg;(z) =0for 1 <i <
r — 1. Hence we may assume that g > 1. It follows from (3) that

Dy o(z) = agq,0Dq-1,r-1(x) + bg0zDy_1,0(z), 4)

Dq,,-(:r) = aq,iDq,i_l(x) + bq,i:L‘D _1_i(:1:) for1<i<r-1, (5)
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where ag; = gr+i—1 and by ; = (g7 +%—1),-;. We proceed by induction
on g. It follows from (4) and (5) that Dy (z) = HZ=1 a1kb10z. So it
suffices to consider the g > 2 case.

First consider the q = 2 case. We will divide the proof into three steps.

Step 1 :If i = 0, then Dz,o(x) = H;;i al‘kaz'obl,o.’l} + bg.obl,ozz. Note
that aqi > 0 and bq.,' > 0. We get 2201 < 21,01 = 0.

Step 2: If i =1, then Dz,l(z) = a2,1D2,0($) + a1,1b2’1b1,o$2. Note that
sgn (D2,1(22,0,1)) = +1. By Weierstrass Intermediate Value Theorem, we
have 2201 < 22,11 < 21,11 = 0.

Step3:1f1<i<r—2, then

i+1
D2 141(z) = 02,641 D2,4(z) + [ ] a1,4b2,4161,02%.
k=1

Assume now that 22;_1,1 < 22,51 < 21,51 = 0. Note that
sgn (D2,i+1(22,i;1)) = +1.

Therefore D, i+1(z) has precisely one zero in the interval (22::,0), ie.,
241 < 22,i+131 < 21,i+1;1 = 0. Hence the result holds for ¢ = 2. In the
same way, it is not difficult to verify that the result holds for D3 ;(z), i.e.,
Zo,r—151 < 23,0;2) 23,i;j < 23,i+1;; and 2345 < 224, for 1 <7 <2

Next assume that the result holds for all positive integers up to ¢, and
let us prove the result holds for ¢ + 1. We also divide our proof into three
steps.

Step 4 : If i = 0, then Dg4,0(z) = @g4+1,0Dg,r-1(2) +bg+1,02D4,0(z). By
the assumption, we have zgr_1; < zg—1,r—1;5 < Zg,0;5+1 for 1 <j < g-—2.
Note that

sgn (Dg+1,0(2g,r-1;5)) = (—1)q+j+1»
sgn (Dg+1,0(2¢,0,5+1)) = (-1)7+.
Therefore Dg41,0(x) has a zero in each of ¢ — 2 intervals (zg,r—1;5, 24,0;j+1)-
Also, sgn (Dg+1,0(2,011)) = (—1)? and sgn (Dy41,0(—00)) = (=1)?**. Thus
Dy41,0(z) has a zero in the interval (—00, zg,0;1). Moreover, Dg.1,0(z) has
a zero in the interval (2zg,r—1;9-1,0) since sgn (Dg41,0(zgr-1;4-1)) = +1.
Hence Dg41,0(z) has only simple real zeros. In particular,

2g41,0,1 < 200,15 Zg,r—1i5 < Zg+1,0;5+1 < Zgoj+1 for1<j<g-1. (6)
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Step 5 : If ¢ = 1, then Dgy1,1(2) = @g41,1D441,0(z) + bg1,12D4,1(z).
For 1 < j < ¢—1, it follows from (6) that sgn (Dgy1,1(2g+1,0,5)) = (=1)2+
and sgn (Dg+1,1(2¢,1;5)) = (—=1)9*9+1. Also, sgn (Dg41,1(20+1,05)) = +1.
Thus Dyy1,1(x) has precisely one zero in each of g intervals (zg41,0;5, Zq,1;5)
for 1 < j < q. Hence the result holds for Dg.11(z).

Step 6 : If 1 < i < 7 —2, then Dyi141(z) = agsr,i41Dg+1,i(z) +
bg+1,i+12Dg i41(z). Assume that

2g+1,55 < Zq,i5 < 2g,i41;5> Zg41,0; < Zgi1,15 < 0 < Zgq14; for1<j<g.

We have
sgn (Dgs1,i+1(2g41,55)) = (1),

s80 (Dg41,i41(2gi415)) = (-1)7H+L,

Thus Dg1,:+1(x) has precisely one zero in each of g intervals (2g+1,4;5, 2q,i+1;5)-
Hence 254165 < Zg#1i41,5 < Zgi+1is a0d 20 155 < Zg41,05+1 < Zg0;j41-
This completes the proof. O

Let f(z) = Y r_oaxz® be a real polynomial with deg(f) > 2. If all the
zeros of f(z) are real, a result due to Newton [6] implies that the coefficients
of f(z) satisfy the following concavity condition:

—k+1
a,% > ak_lak_,l-kz-—ln—-n-—f—:ét— forl<k<n-1. )]

If the zeros of f(z) are not all equal, these inequalities are strict. By
Theorem 3 and the Newton'’s inequality (7), we have the following corollary.
Corollary 4. Let n=gr +1i, where 0 <i<r—1, Then

k+1lgq—k+1

—_— <k<Lg-1.
A pmys for1<k<g-1

dr(n, k)? > dr(n, k — 1)dy(n, k + 1)
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