Upper Domination Number and Domination Number in a Tree

Min-Jen Jou
Department of Insurance
Ling Tung University
Taichung, Taiwan 40852, R.O.C.
e-mail: mjjou@mail.ltu.edu.tw

Abstract

For a graph G=(V(G),E(G)), a set $S\subseteq V(G)$ is called a dominating set if $N_G[S]=V(G)$. A dominating set S is said to be minimal if no proper subset $S'\subset S$ is a dominating set. Let $\gamma(G)$ (called the domination number) and $\Gamma(G)$ (called the upper domination number) be the minimum cardinality and the maximum cardinality of a minimal dominating set of G, respectively. For a tree T of order $n\geq 2$, it is obvious that $1=\gamma(K_{1,n-1})\leq \gamma(T)\leq \Gamma(T)\leq \Gamma(K_{1,n-1})=n-1$. Let $t(n)=\min_{|T|=n}(\Gamma(T)-\gamma(T))$. In this paper, we determine t(n) for all natural numbers n. We also characterize trees T with $\Gamma(T)-\gamma(T)=t(n)$.

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, we refer to V(G) and E(G) as the vertex set and the edge set, respectively. The cardinality of V(G) is called the *order* of G, denoted by |G|. The *(open) neighborhood* $N_G(x)$ of a vertex x is the set of vertices adjacent to x in G, and the *close neighborhood* $N_G[x]$ is $N_G(x) \cup \{x\}$. For any subset $A \subseteq V(G)$, denote $N_G(A) = \bigcup_{x \in A} N_G(x)$ and $N_G[A] = \bigcup_{x \in A} N_G[x]$. The degree $d_G(x)$ of a vertex x is the cardinality of $N_G(x)$. A vertex x is said to be a leaf if $d_G(x) = 1$. Two distinct vertices u and v are called duplicated if $N_G(u) = N_G(v)$. In a graph G, an x-y path is a sequence $x = v_0, v_1, \cdots, v_r = y$ of distinct vertices with $v_{i-1}v_i \in E(G)$ for $1 \le i \le r$; and r is called the length of this path. For a connected graph G, we define the distance $d_G(x, y)$ between x and y as the minimum length

of an x-y path, and the diameter of a graph G is diam $(G) = \max_{x,y} d(x,y)$. A forest is a graph with no cycles, and a tree is a connected forest. Suppose that u and v are duplicated vertices in a tree T, then they are both leaves. For notation and terminology in graphs we follow [1] in general.

A dominating set of a graph G is a subset $S \subseteq V(G)$ such that $N_G[S] = V(G)$. A dominating set S is said to be minimal if no proper subset $S' \subset S$ is a dominating set. Let $\gamma(G)$ and $\Gamma(G)$ be the minimum cardinality and the maximum cardinality of a minimal dominating set of G. The numbers $\gamma(G)$ and $\Gamma(G)$ are called the domination number and the upper domination number, respectively. A minimal dominating set of cardinality $\gamma(G)$ ($\Gamma(G)$) in graph G is said to be a γ -set (Γ -set). Domination and its variations in graphs are well studied, an estimated thousand papers have been written on this topic (see [3],[4]). For a tree T of order $n \geq 2$, it is obvious that $1 = \gamma(K_{1,n-1}) \leq \gamma(T) \leq \Gamma(T) \leq \Gamma(K_{1,n-1}) = n-1$. Our aim is to find trees T such that $\Gamma(T) - \gamma(T)$ is as small as possible. For easy presentation, let $t(n) = \min_{|T|=n} (\Gamma(T) - \gamma(T))$ for $n \geq 1$. In this paper, we determine t(n) for all natural numbers n. We also characterize trees T with $\Gamma(T) - \gamma(T) = t(n)$.

2 Characterization

A vertex v of G is a support vertex if it is adjacent to a leaf in G. We denote the set L(G) the collection of all leaves of G, and the set U(G) the collection of all support vertices of G. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph G - A by removing all vertices in A and all edges incident to these vertices. For a subset $B \subseteq E(G)$, the edge deletion of B from G is the graph G - B by removing all edges of B.

An independent set in a graph G is a subset $I \subseteq V(G)$ of pairwise non-adjacent vertices. A maximal independent set of G is an independent set I that is not a proper subset of any other independent set. The independence number $\alpha(G)$ of G is the maximum cardinality of a maximal independent set of G. A maximal independent set of cardinality $\alpha(G)$ in graph G is said to be an α -set. Let i(G) be the minimum cardinality of a maximal independent set of G. Since each maximal independent set in a graph G is a minimal dominating set of G, we have the following lemma.

Lemma 1 ([3]) For any graph G, we have $\gamma(G) \leq i(G) \leq \alpha(G) \leq \Gamma(G)$.

For a graph G, let \widehat{G} be the graph with vertex set $V(\widehat{G}) = V(G) \cup \{\hat{x} : x \in V(G)\}$ and edge set $E(\widehat{G}) = E(G) \cup \{x\hat{x} : x \in V(G)\}$. And let \widehat{G}_{+1} be the graph with vertex set $V(\widehat{G}_{+1}) = V(\widehat{G}) \cup \{x'\}$ and edge set $E(\widehat{G}_{+1}) = E(\widehat{G}) \cup \{xx'\}$ for some vertex $x \in V(G)$. Notice that there are exactly two duplicated leaves \hat{x} and x' in the graph \widehat{G}_{+1} .

Theorem 1 ([5]) If T is a tree of order $n \geq 2$, then $\gamma(T) = \alpha(T)$ if and only if $T = \widehat{G}$ for some tree G of order n/2.

If $T = \widehat{G}$ for some tree G of order n/2, then $U(T) = \{x : x \in V(G)\}$ is a γ -set and $L(T) = \{\widehat{x} : x \in V(G)\}$ is an α -set of T. Note that $\gamma(T) = |U(T)| = |L(T)| = \alpha(T) = n/2$.

The following theorem is proved by Cockayne, Favaron, Payan, and Thomason in 1981.

Theorem 2 ([2]) If G is a bipartite graph, then $\alpha(G) = \Gamma(G)$.

As trees are bipartite graphs, Theorem 2 gives that $\alpha(T) = \Gamma(T)$ for any tree T. This means that $t(n) = \min_{|T|=n}(\Gamma(T) - \gamma(T)) = \min_{|T|=n}(\alpha(T) - \gamma(T))$ for all trees T of order $n \ge 1$. Theorem 1 indicates that t(n) = 0 for all even n and $t(n) \ge 1$ for all odd $n \ge 3$. In this paper, we want to prove that t(n) = 1 for all odd $n \ge 3$. Additionally, we also characterize trees of odd order n such that t(n) = 1.

Lemma 2 If T is a tree of order $n \geq 3$, then there exists an α -set I of T such that $L(T) \subseteq I$.

Proof. Let I_1 be an α -set of T. If $L(T) \subseteq I_1$, then we are done. So we assume that there exists a leaf x such that $x \notin I_1$. This implies $y \in I_1$, where y is the neighbor of the leaf x in T. So $I_2 = (I_1 - \{y\}) \cup \{x\}$ is an α -set of T such that $x \in I_2$. Continue this procedure, we can get an α -set I such that $L(T) \subseteq I$.

Lemma 3 If T is a tree of order $n \geq 3$, then there exists a γ -set S of T such that $U(T) \subseteq S$.

Proof. Let S_1 be a γ -set of T. If $U(T) \subseteq S_1$, then we are done. So we assume that there exists a support vertex y such that $y \notin S_1$. This implies that $x \in S_1$ for each leaf x adjacent to y. Let $S_2 = (S_1 - \{x\}) \cup \{y\}$. Then S_2 is a dominating set T with cardinality $|S_2| = |S_1| = \gamma(T)$. Thus S_2 is a γ -set with $y \in S_2$. Continue this procedure, we get a γ -set S such that $S_1 \subseteq S_2 \subseteq S_1$.

Lemma 4 Let T be a tree of order $n \ge 2$. Then $\alpha(T) \ge \frac{n}{2}$ and $\gamma(T) \le \frac{n}{2}$.

Proof. Since T is a bipartite graph, it is possible to partition V(T) into V_1 and V_2 such that every V_i is an independent set of T. Every V_i is an independent set and also a dominating set of T. These imply that $\alpha(T) = \Gamma(T) \ge \max\{|V_1|, |V_2|\} \ge \frac{n}{2}$ and $\gamma(T) \le \min\{|V_1|, |V_2|\} \le \frac{n}{2}$. \square

Suppose that x_1 and x_2 are duplicated leaves in a tree T, and y is the common neighbor of them. Let $T' = T - \{x_2\}$. Note that T' is also a tree. And we have the following properties:

- (i) $y \in S$ for each γ -set S of T;
- (ii) $x_1, x_2 \in I$ for each α -set of T;
- (iii) $\gamma(T) = \gamma(T')$ and $\alpha(T) = \alpha(T') + 1$.

Lemma 5 Suppose that T is a tree of order $n \geq 3$. Let T' be a maximal subgraph of T such that T' has no duplicated leaves. Then $\alpha(T) \geq \gamma(T) + m$, where m = |T| - |T'| is the number of vertices removing from T.

Proof. Let X be the set of vertices removing from T, say T' = T - X and |X| = m. Since $\alpha(T') \ge \gamma(T')$, by Lemmas 2 and 3, there exist an α -set I' and a γ -set S' of subtree T' with $|I'| \ge |S'|$ such that $L(T') \subseteq I'$ and $U(T') \subseteq S'$. However, S' is also a γ -set of T. So, $I = I' \cup X$ is an independent set of T because of $X \subset L(T)$. Thus

$$\alpha(T) \ge |I| = |I'| + m \ge |S'| + m = \gamma(T) + m.$$

By Lemma 5, the number m is at most 1 whenever $\alpha(T) - \gamma(T) = 1$. That is, there is at most one pair of duplicated leaves in T whenever $\alpha(T) - \gamma(T) = 1$.

3 Main Theorem

For $i \ge 1$ and $j \ge 0$, we define a baton B(i, j) as follows. Start with a basic path P with i vertices and attach j paths of length two to the endpoints of P; see Figure 1. Note that B(i, j) is a tree with i + 2j vertices.

Theorem 3 Let T be a tree of odd order $n=2k+1\geq 3$. Then $\alpha(T)=\gamma(T)+1$ if and only if $T=\widehat{G}_{+1}$ for some tree G of order k or $T\cong B(3,k-1)$.

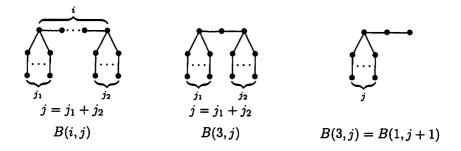


Figure 1: Batons

Proof. The theorem is true for n=3. And the sufficiency is clear, so we only need to prove the necessity. Suppose that T is a tree of odd order $n=2k+1\geq 5$ such that $\alpha(T)=\gamma(T)+1$. Then we consider the following cases.

Case 1. T have some duplicated leaves.

By Lemma 5, then T has exactly one pair of duplicated leaves, say x_1 and x_2 . Let $T' = T - \{x_2\}$. By Lemma 2 and Lemma 3, we have $\alpha(T') = \alpha(T) - 1 = (\gamma(T) + 1) - 1 = \gamma(T) = \gamma(T')$. So T' is a tree of even order $n' = 2k \ge 4$ such that $\alpha(T') = \gamma(T')$. By Theorem 1, $T' = \widehat{G}$ for some tree G of order k, this implies that $T = \widehat{G}_{+1}$ for some tree G of order K.

Case 2. T has no duplicated leaves.

Let $A=U(T)\cup L(T)$. Since T has no duplicated leaves, |U(T)|=|L(T)|=|A|/2. As T is odd, T-A is not empty, say it has r components T_1,T_2,\cdots,T_r . Let $T_i'=T_i-L(T_i)$, where the degree zero vertex in a tree of one vertex is considered as a leaf. Let $n_i=|T_i|$ and $l_i=|L(T_i)|$ for $1\leq i\leq r$. Choose a maximum independent set I_i of I_i , and a minimum dominating set I_i of I_i' . The set I_i is empty whenever $I_i'=1$. Since no vertex of I_i is adjacent to a vertex in I_i , we have that I_i of $I_i'=1$ is an independent set of $I_i'=1$ of size at least $I_i'=1$, we have that $I_i'=1$. Since every vertex of $I_i'=1$ is adjacent to some vertex in $I_i'=1$, we have that $I_i'=1$ is a dominating set of $I_i'=1$ of size at most $I_i'=1$, we have that $I_i'=1$ is a dominating set of $I_i'=1$ of $I_i'=1$ is $I_i'=1$ in the quality if and only if $I_i'=1$ is even with $I_i'=1$ or $I_i'=1$ in I_i'

Theorem 4 Let $t(n) = \min_{|T|=n} (\Gamma(T) - \gamma(T))$ for $n \ge 1$. Then

$$t(n) = \begin{cases} 0, & if \ n = 1 \ or \ 2k, \\ 1, & if \ n = 2k + 1 \ge 3. \end{cases}$$

Furthermore, T is a tree with $\Gamma(T) - \gamma(T) = t(n)$ if and only if

$$T = \begin{cases} \widehat{G}, & \text{if } n = 2k, \\ \widehat{G}_{+1}, P_1 & \text{or } B(3, k - 1), & \text{if } n = 2k + 1 \ge 1, \end{cases}$$

for some tree G of order k.

References

- [1] G. Chartrand and L. Lesniak, Graphs and digraphs.
- [2] E.J. Cockayne, O. Favaron, C. Payan, and A.G. Thomason. Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math., 33:249-259, 1981.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, 1998.
- [4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs: Advanced Topics, Marcel Dekker Inc., New York, 1998.
- [5] M.J. Jou, Dominating sets and independent sets in a tree, to appear in Ars Combinatoria.