ON THE TWO-SQUARE THEOREM AND THE
MODULAR GROUP

NIHAL YILMAZ OZGUR

ABSTRACT. Given a positive integer n such that —1 is a quadratic
residue mod n, we give an algorithm that computes the integers u
and v which satisfy the equation n = u? + v2, To do this we use the
group structure of the Modular group I' = PSL(2, Z).

1. INTRODUCTION

Fermat’s two-square theorem states that a prime p is expressible as the
sum of two squares if and only if —1 is a quadratic residue mod p, [5]. In
(2], Fine gave a new proof of this theorem using the group structure of the
Modular group I' = PSL(2,Z) which is one of the Hecke groups. Fine’s
result extends the two-square theorem for an arbitrary positive integer n.

The Hecke groups H(A) are the discrete subgroups of PSL(2,R) gener-
ated by two linear fractional transformations

R(z)=—% and T(z) = z+ A

where A€ R, A>20r A=A, = 2cos(§), g € N, ¢ > 3. These values of A
are the only ones that give discrete groups, by a theorem of Hecke, [6]. It is
well-known that the Hecke groups H()\,) are isomorphic to the free product
of two finite cyclic groups of orders 2 and g, that is, H()\;) & C2 % C,. The
Modular group I is the Hecke group H(A3). T and its normal subgroups
have especially been of great interest in many fields of mathematics, for
example number theory, automorphic function theory and group theory,
(see [1]-{4] and [7}-[10]).
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The Modular group I' consists of all linear fractional transformations

az+b

z— —— a,b, ¢, deZandad—bc=1.
cz+d

b
All elements of I can also be considered as projective matrices + ( @ d )
¢

with a, b, ¢, d rational integers and ad — bc = 1.
Using the group structure of the Modular group, Fine proved the fol-
lowing theorem, [2]:

Theorem 1.1. A positive integer n is the sum of 2 squares if —1 is a
quadratic residue mod n. Conversely if n = u® + v? with (u,v) = 1 then
—1 is a quadratic residue mod n.

In this paper, given a positive integer n such that —1 is a quadratic
residue mod n, we give an algorithm that computes the integers u and v in
the theorem. To do this, we use the some facts about the structure of the
Modular group.

2. THE ALGORITHM

Before giving the algorithm that computes the integers u and v, we
summarize the technique used in the proof of Theorem 1.1. Let n > 0,
n € Z. Assume that —1 is a quadratic residue mod n. Then there are
integers I, k with {2 = =1 + kn. Now we consider the matrix

-l n
(2.1) A=(—k l)

of which determinant 1 = —I2 + kn. Clearly A € I. Also A has or-
der 2 as trA = 0. Since I' & Cj * C3, each element of order 2 in I is
conjugate to the generator R, that is, A = BRB~! for some B € I. If
a B

B =
vy &

10, 8,7,6 € Z,ad — By = 1, then we obtain

Ae —(ay+B8) o?+p?
T\ =P+ (ev+80) )

Comparing the entries, we have n = a? + 2 for some integers , 8. From
the determinant condition, clearly we get (a,3) = 1. Also we find that
k=~2+6%1=ay+B6.
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We now present the algorithm. First we need the following result which
follows directly from the discussion above and the proof of Theorem 1.1.

We let
0 1 11
R=+ T == .
(5 5)m==(3 1)

As mentioned in the introduction, the Modular group I is generated by R
and T

Proposition 2.1. Let n be a positive integer such that —1 is a quadratic
residue mod n and let l, k be the integers satisfying the equation 12 =
—1+ kn. Now let A be the matriz

a=(37)

and let B be the projective matriz such that
A=BRB™.

-(5 %)

then the following equations are satisfied:

If

n=o?+p,
(2.2) E=17 -+,
l=ay+pd.

There is a standard algorithm (see [9] and [3]) to express any projective
matrix M €T in terms of the generators R, T'. From this algorithm we get
the algorithm to find the integers u, v such that n = u2 + v2,

Proposition 2.2. Let n and B be as in Proposition 2.1. Then given A
there is an effective algorithm to determine B. From B the integers u, v
can then be determined.

Proof. Apply the standard algorithm as described in [9] or [3] to express
A asaword in R and T. Now let V = RT so that T = RV and rewrite
the expression for A as a word in R and V. R and V form a free product
basis for I' so the expression for A in terms of R and V is unique. Since
A = BRB™! it follows that the expression for B in terms of R and V can
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be read directly off of the expression for A. Rewriting in terms of a matrix

gives B as a matrix.
This standard algorithm can be implemented for B in the following way:
Define the functions

(2.3) f : (a,bec,d)— (d,—c,—b,a)
g : (abecd)—(a—c2a+b—ccec+d).
Given A start with (—I,n,—k,!). Apply f if the first coordinate is positive

and apply g if not. Proceed and eventually (0,1, -1,0) will be obtained.
Write R for f and T for r; times g. The matrix B is then B =T RIT™ R

... RT™ where only r¢ and r, may be zero ([9] or (3]). a
since T = > "), R=( " })anarr={° !
01 -1 0 -1 -r

for any integer r, it is easy to compute the matrix B. The following example
illustrates the algorithm defined in Proposition 2.2.

- Example 2.1. Let n = 1649. Observe that —1 is a quadratic residue mod
1649. We can find the integers 463,130 such that (463)% = —1 + 1649.130.
We have

(~463,1649,-130,463) g (333,853, ~130,333) g (~203,317,~130,203)
9 (~73,41,-130,73) g (57,25,~130,~57) £ (-57,130,-25,57)

g (~32,41,-25,32) g (-7,2,-25,7) g (18,13,-25,-18) f (~18,25,~13,"
g (-5,2,-13,5)g (8,5,-13,-8) f (~8,13,-5,8) g (-3,2,-5,3)

g (2,1,-5,-2) f (-2,5,-1,2) g (-1,2,-1,1)g (0,1,-1,0).

- - - -

Then we obtain B = T*RT3R(T?R)*T?. If we compute the matriz B, we

T EBIEDIEIEY
(%3)

By (2.2), we find
1649 = (25)2 + (32)%,130 = (7)% + (9)® and 463 = 25.7 + 32.9.
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Remark 2.1. In [1], Beck showed that there is a one to one correspondence
between the family of 2 x 2 matrices over Z* whose determinant equals 1,
and the family of partially ordered paths. Then using this correspondence
Beck also gave an another algorithm that computes the integers u and v
in the Theorem 1.1. Our algorithm uses matriz multiplication and works
easily even for large values of n as in the Ezample 2.1.
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