Two-color Rado number for x + y + c = 4z

Song Guo

School of Mathematical Science, Huaiyin Normal University Huaian 223300, People's Republic of China

E-mail: guosong77@hytc.edu.cn

Abstract: For positive integers $c \ge 0$ and $k \ge 1$, let n = R(c, k) be the least integer, provided it exists, such that every 2-coloring of the set $[1, n] = \{1, \ldots, n\}$ admits a monochromatic solution to the equation x + y + c = 4z with $x, y, z \in [1, n]$. In this paper the precise value of R(c, 4) is shown to be $\lceil (3c + 2)/8 \rceil$ for all even $c \ge 34$..

Key words: Rado number; coloring; linear equation.

2000 Mathematics Subject Classification: 05D10,11B75,11D04.

This research was supported by Natural Science Research Project of Ordinary Universities in Jiangsu Province (08KJB110002),P.R.China.

1 Introduction

Let $\mathbb{N}=\{0,1,2,\ldots\}$, and $[a,b]=\{x\in\mathbb{N}:a\leqslant x\leqslant b\}$ for $a,b\in\mathbb{N}$. For $k,n\in\mathbb{Z}^+=\{1,2,3,\ldots\}$, we call a function $\Delta:[1,n]\to[0,k-1]$ a k-coloring of the set [1,n], and $\Delta(i)$ the color of $i\in[1,n]$. Given a k-coloring of the set [1,n], a solution to a given diophantine equation L among elements of same color is called monochromatic solution.

Let $k \in \mathbb{Z}^+$. In 1916, I. Schur [8] proved that if $n \in \mathbb{Z}^+$ is sufficiently large then for every k-coloring of the set [1, n], there exists a monochromatic solution to

$$x_1 + x_2 = x_3$$

with $x_1, x_2, x_3 \in [1, n]$. An equation L having this property is referred to as k-regular, hence there is an integer n such that every k-coloring of the positive integers up to n contains a monochromatic solution to L. Later Rado [6] characterized all k-regular linear equations. The least value of such an n is called the k-color Rado number for the linear equations. The reader may consult the book [5] by B. M. Landman and A. Robertson for a survey of results on Rado numbers. Recently S.Guo and L-C.W. Sun [2] determined the precise values of 2-color Rado number for the equation

$$a_1x_1+\cdots+a_mx_m=x_0,$$

which confirmed a conjecture of B. Hopkins and D. Schaal[3].

In this paper we consider 2-coloring Rado number n=R(c,k) for the family of equations of the form

$$L(c,k): x_1 + x_2 + c = kx_3$$

for integers $c \ge 0$ and $k \ge 1$. If R(c, k) does not exist, then the 2-color Rado number is defined to be infinite.

In 2004 S. Jones and D. Schaal [4] determined the 2-regular equations in the family L(c,k).

Theorem 1. For $c \ge 0$ and $k \ge 1$, R(c, k) is finite if and only if k is odd or c is even.

If k=4 and c is even, S. Jones and D. Schaal showed that $\lceil (3c+2)/8 \rceil \leqslant R(c,4) \leqslant \lceil (3c+2)/8 \rceil + 3$ where $\lceil \cdot \rceil$ denote the ceil function. Using a computer search, they gave the actual numbers R(c,4) for even c between 2 and 72(cf. [4] Table 2). In this paper we showed that the difference between R(c,4) and $\lceil (3c+2)/8 \rceil$ is zero for $c \geqslant 34$. (Note that $R(c,4) > \lceil (3c+2)/8 \rceil$ for some $c \in \lceil 10,28 \rceil$.) Thus the precise value of R(c,4) for all even c are determined.

Theorem 2. For all even $c \ge 34$,

$$R(c,4) = \lceil (3c+2)/8 \rceil = egin{cases} (3c+2)/8 & ifc \equiv 2 \pmod 8 \ (3c+4)/8 & ifc \equiv 4 \pmod 8 \ (3c+6)/8 & ifc \equiv 6 \pmod 8 \ (3c+8)/8 & ifc \equiv 0 \pmod 8 \end{cases}.$$

Based on the above result and some other evidences, the following conjecture is probably true.

Conjecture 1. For $k \ge 3$ and c sufficiently large, if k is odd or c is even,

$$R(c,k) = \lceil \frac{2\lceil (c+2)/k \rceil + c}{k} \rceil.$$

Here we give a lemma ([4], Lemma 1) which will be used in Section 2.

Lemma 1. For all integers $c, b \ge 0$ and $k \ge 3$, we have $R(c, k) \le R(c + b(2 - k), k) + b$.

2 Proof of Theorem 2

The inequality $R(c,4) \ge \lceil (3c+2)/8 \rceil$ was stated already in [4, 7]. It suffices to show that $R(c,4) \le \lceil (3c+2)/8 \rceil$.

First we will prove it to be true for the case $c \equiv 2 \pmod{8}$ and $c \geqslant 34$. Assume that $c \equiv 2 + 8\delta \pmod{32}$ where $\delta \in \{0, 1, 2, 3\}$. Let $n \geqslant (3c + 2)/8$ be an integer and let $\Delta : [1, n] \rightarrow [0, 1]$ be a 2-coloring of [1, n]. Without loss of generality, we may assume that

$$\Delta(1) = 0. \tag{1}$$

Suppose, for contradiction, that there doesn't exist any monochromatic solution to the equation L(c,4).

Since $1+1+c=4\cdot\frac{c+2}{4}$, we have $\Delta(\frac{c+2}{4})\neq\Delta(1)=0$, and hence

$$\Delta(\frac{c+2}{4}) = 1. \tag{2}$$

Similarly, as $\frac{c+2}{4} + \frac{c+2}{4} + c = 4 \cdot \frac{3c+2}{8}$ and $\frac{c+6}{8} + \frac{3c+2}{8} + c = 4 \cdot \frac{3c+2}{8}$, we must have

$$\Delta(\frac{3c+2}{8}) = 0\tag{3}$$

and

$$\Delta(\frac{c+6}{8}) = 1. (4)$$

Observe that

$$1\leqslant 9-2\delta\leqslant \frac{c+2}{4}-4\delta\leqslant \frac{c+2}{4}+4\delta\leqslant \frac{3c+2}{8}.$$

Combining (3) and

$$(\frac{c+2}{4}-4\delta)+(\frac{c+2}{4}+4\delta)+c=4\cdot\frac{3c+2}{8},$$

we have

$$\Delta(\frac{c+2}{4}-4\delta)=1 \text{ or } \Delta(\frac{c+2}{4}+4\delta)=1.$$

Below we distinguish two cases.

Case 3.1.
$$\Delta(\frac{c+2}{4} - 4\delta) = 1$$
.

Clearly,

$$(\frac{c+2}{4}-4\delta)+(\frac{c+2}{4})+c=4\cdot\frac{3c+2-8\delta}{8},$$

it follows that

$$\Delta(\frac{3c+2-8\delta}{8}) = 0\tag{5}$$

by (2) and $\Delta(\frac{c+2}{4}-4\delta)=1$. Since $\Delta(\frac{3c+2}{8})=\Delta(\frac{3c+2-8\delta}{8})=0$ by (3) and

$$(\frac{3c+2-8\delta}{8})+(\frac{c+6+8\delta}{8})+c=4\cdot\frac{3c+2}{8},$$

we must have

$$\Delta(\frac{c+6+8\delta}{8}) = 1. \tag{6}$$

As $\Delta(\frac{c+2}{4}) = 1$ by (2), and

$$\frac{c+6+8\delta}{8} + \frac{c+2}{4} + c = 4 \cdot \frac{11c+10+8\delta}{32},$$

we have

$$\Delta(\frac{11c + 10 + 8\delta}{32}) = 0. \tag{7}$$

Observe that

$$(1+2\delta) + \frac{3c+2-8\delta}{8} + c = 4 \cdot \frac{11c+10+8\delta}{32},$$

thus we have

$$\Delta(1+2\delta)=1.$$

by (5). Note that

$$(1+2\delta)+(1+2\delta)+c=4\cdot\frac{c+2+4\delta}{4},$$

then we have $\Delta(\frac{c+2+4\delta}{4}) \neq \Delta(1+2\delta)$, hence

$$\Delta(\frac{c+2+4\delta}{4})=0.$$

Recall $\Delta(1)=0$ by (1). As $1+(1+4\delta)+c=4\cdot\frac{c+2+4\delta}{4}$, we have

$$\Delta(1+4\delta)=1.$$

Also, by $(1 + 4\delta) + (1 + 4\delta) + c = 4 \cdot \frac{c+2+8\delta}{4}$, we have

$$\Delta(\frac{c+2+8\delta}{4})=0.$$

If $\Delta(\frac{5c+6+8\delta}{16}) = 0$, then we establish that

$$(1, \frac{c+2+8\delta}{4}, \frac{5c+6+8\delta}{16})$$

is a monochromatic solution to L(c, 4) from

$$1 + \frac{c+2+8\delta}{4} + c = 4 \cdot \frac{5c+6+8\delta}{16}.$$

On the other hand, if $\Delta(\frac{5c+6+8\delta}{16}) = 1$, then we have

$$(\frac{c+6+8\delta}{8}, \frac{c+6+8\delta}{8}, \frac{5c+6+8\delta}{16})$$

is a monochromatic solution to L(c, 4) by (6) and

$$\frac{c+6+8\delta}{8} + \frac{c+6+8\delta}{8} + c = 4 \cdot \frac{5c+6+8\delta}{16}.$$

In either case, we get a monochromatic solution to L(c, 4), contradicting our assumption.

Note that all above numbers are positive integers not exceed $\frac{3c+2}{8}$ as $c \equiv 2 + 8\delta \pmod{32}$ and $c \geqslant 34$.

Case 2.
$$\Delta(\frac{c+2}{4}+4\delta)=1$$
.

Ву

$$(1+8\delta) + (1+8\delta) + c = 4 \cdot \frac{c+2+16\delta}{4}$$

we have

$$\Delta(1+8\delta) = 0 \neq \Delta(\frac{c+2}{4} + 4\delta) = 1.$$
 (8)

Since $\Delta(1) = 0$ by (1), and

$$1 + (1 + 8\delta) + c = 4 \cdot \frac{c + 2 + 8\delta}{4},$$

we obtain that $\Delta(\frac{c+2+8\delta}{4}) = 1$. Similarly, as

$$(1+4\delta) + (1+4\delta) + c = 4 \cdot \frac{c+2+8\delta}{4}$$

and

$$1 + (1+4\delta) + c = 4 \cdot \frac{c+2+4\delta}{4},$$

we must have

$$\Delta(\frac{c+2+4\delta}{4}) = 1 \neq \Delta(1+4\delta) = 0 \tag{9}$$

Therefore we have

$$\Delta(1+2\delta) = 0\tag{10}$$

by

$$(1+2\delta) + (1+2\delta) + c = 4 \cdot \frac{c+2+4\delta}{4}$$
.

Combining $\Delta(\frac{c+6}{8})=1$ by (4) and $\Delta(\frac{c+2+4\delta}{4})=1$ by (9) with

$$\left(\frac{c+6}{8}\right) + \left(\frac{c+2+4\delta}{4}\right) + c = 4 \cdot \frac{11c+10+8\delta}{32},$$

we establish that

$$\Delta(\frac{11c+10+8\delta}{32}) = 0. \tag{11}$$

Observe that

$$1 + 2\delta + \frac{3c + 2 - 8\delta}{8} + c = 4 \cdot \frac{11c + 10 + 8\delta}{32},$$

then we have

$$\Delta(\frac{3c+2-8\delta}{8}) = 1\tag{12}$$

by (10) and (11). Clearly,

$$\frac{c+2-8\delta}{4} + \frac{c+2-8\delta}{4} + c = 4 \cdot \frac{3c+2-8\delta}{8},$$

it follows that

$$\Delta(\frac{c+2-8\delta}{4}) = 0. \tag{13}$$

Since (11) and

$$\frac{c+2-8\delta}{4} + \frac{c+6+24\delta}{8} + c = 4 \cdot \frac{11c+10+8\delta}{32},$$

we have

$$\Delta(\frac{c+6+24\delta}{8})=1.$$

Finally, by

$$\frac{c+6+24\delta}{8} + \frac{c+6+24\delta}{8} + c = 4 \cdot \frac{5c+6+24\delta}{16},$$

one can find that

$$\Delta(\frac{5c + 6 + 24\delta}{16}) = 0 \neq \Delta(\frac{c + 6 + 24\delta}{8}).$$

Recall $\Delta(1+8\delta)=0$ by (8) and $\Delta(\frac{c+2-8\delta}{4})=0$ by (13), we have a monochromatic solution

$$(1+8\delta,\frac{c+2-8\delta}{4},\frac{5c+6+24\delta}{16})$$

to L(c,4) from

$$1 + 8\delta + \frac{c + 2 - 8\delta}{4} + c = 4 \cdot \frac{5c + 6 + 24\delta}{16},$$

which contradicts our assumption.

One can check that all above numbers are positive integers not exceed $\frac{3c+2}{8}$ as $c \equiv 2 + 8\delta \pmod{32}$ and $c \geqslant 34$.

Combining the above cases, we obtain that $R(c,4) \leqslant \frac{3c+2}{8}$ for $c \equiv 2 + 8\delta \pmod{32}$ and $c \geqslant 34$.

Below we assume that $c \not\equiv 2 + 8\delta \pmod{32}$. Let $i = \min\{j \geqslant 0 : c - j \equiv 2 + 8\delta \pmod{32}, \delta \in \{0, 1, 2, 3\}\}$. Clearly, i is even. Thus, by Lemma 1 with k = 4 and b = i/2,

$$R(c,4) \leqslant R(c-i,4) + i/2.$$

Then

$$R(c,4) \leqslant \frac{3(c-i)+2}{8} + \frac{i}{2} = \frac{3c+i+2}{8}.$$

hence $R(c,4) \leq \lceil (3c+2)/8 \rceil$. Now we complete the proof.

Acknowledgments

I would like to thank the referee for his/her helpful suggestions.

References

- [1] A. Beutelspacher, W. Brestovansky. Generalized Schur numbers. in: Combinatorial Theory (Schloss Rauischholzhausen, 1982), Lecture Notes in Math., 969, Springer, New York, 1982, pp. 30–38.
- [2] S.Guo and Z.-W.Sun. Determination of the two-color Rado number for $a_1x_1 + \cdots + a_mx_m = x_0$. J.Combin. Theory Ser. A.,115(2008):345-353.
- [3] B. Hopkins and D. Schaal. On Rado numbers for $\sum_{i=1}^{m-1} a_i x_i = x_m$. Adv. in Appl. Math., 35(2005):433-441.
- [4] S. Jones and D. Schaal. Two-color Rado numbers for x+y+c=kz. Discrete Math., 289(2004): 63-69.
- [5] B. M. Landman and A. Robertson. Ramsey Theory on the Integers. American Mathematical Society, Providence, RI, 2004.
- [6] R. Rado. Studien zur Kombinatorik. Math. Z, 36(1933): 242-280.
- [7] D. Schaal. On generalized Schur numbers. Congr. Number., 98(1993): 178-187.
- [8] I. Schur. Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. Jahresber. Deutsch. Math.-Verein., 25(1916): 114-116.