Two-color Rado number for x + y + ¢ = 42
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Abstract: For positive integers ¢ > Oand k > 1,let n = R(c, k) be the
least integer, provided it exists, such that every 2-coloring of the set [1,n] =
{1,...,n} admits a monochromatic solution to the equation z +y+ ¢ = 4z
with ¢, ¥, 2 € [1,n]. In this paper the precise value of R(c,4) is shown to
be [(3c + 2)/8] for all even ¢ > 34..
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1 Imntroduction

LetN = {0,1,2,...},and [a,b] = {z € N: a < z < b} fora,b € N. For
kyneZ*t ={1,2,3,...}, wecall a function A : [1,n] — [0,k — 1] a k-coloring
of the set [1,7n], and A(%) the color of i € [1,n]. Given a k-coloring of the set
(1, 7], a solution to a given diophantine equation L among elements of same color
is called monochromatic solution.

Letk € Z*. In 1916, . Schur [8] proved that if n € Z+ is sufficiently large
then for every k-coloring of the set [1,n], there exists a moncchromatic solution
to

Ty + T2 =13
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with z1, 22,23 € [1,n]. An equation L having this property is referred to as
k-regular, hence there is an integer n such that every k-coloring of the positive
integers up to n contains a monochromatic solution to L. Later Rado [6] charac-
terized all k-regular linear equations. The least value of such an 7 is called the
k-color Rado number for the linear equations. The reader may consult the book
[5] by B. M. Landman and A. Robertson for a survey of results on Rado numbers.
Recently S.Guo and Z.W. Sun [2] determined the precise values of 2-color Rado
number for the equation

0121+ + amTm = To,
which confirmed a conjecture of B. Hopkins and D. Schaal(3].
In this paper we consider 2-coloring Rado number n = R(c, k) for the family
of equations of the form
L(c,k) : z1 + 2 + c = kz3

for integers ¢ > 0 and k > 1. If R(c, k) does not exist, then the 2-color Rado

number is defined to be infinite.
In 2004 S. Jones and D. Schaal [4] determined the 2-regular equations in the

family L(c, k).
Theorem 1. For ¢ > 0 and k > 1, R(c, k) is finite if and only if k is odd or c is
even.

If k = 4 and c is even, S. Jones and D. Schaal showed that [(3¢ + 2)/8] <
R(c,4) < [(3¢c+2)/8] + 3 where [-] denote the ceil function. Using a computer
search, they gave the actual numbers R(c,4) for even c between 2 and 72(cf.
[4] Table 2). In this paper we showed that the difference between R(c, 4) and

[(3¢ + 2)/8] is zero for ¢ > 34. (Note that R(c,4) > [(3c + 2)/8] for some
¢ € [10,28].) Thus the precise value of R(c,4) for all even c are determined.

Theorem 2. For all even c 2> 34,

(3¢+2)/8 ifc=2(mod 8)
(3¢c+4)/8 ifc=4(mod 8)
(3c+6)/8 ifc=6(mod8)
(3¢ +8)/8 ifc=0(mod 8)

R(c,4) = [(3¢+2)/8] =
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Based on the above result and some other evidences, the following conjecture

is probably true.
Conjecture 1. For k > 3 and c sufficiently large, if k is odd or c is even,
2[(c+2)/k] +c

k 1

Here we give a lemma ([4], Lemma 1) which will be used in Section 2.

R(e,ky =]

Lemma 1. For all integers c,b > 0 and k > 3, we have R(c,k) < R(c+ b(2 —
k), k) +b.

2 Proof of Theorem 2

The inequality R(c,4) > [(3c+ 2)/8] was stated already in [4, 7]. It suffices
to show that R(c, 4) < [(3¢c + 2)/8].

First we will prove it to be true for the case ¢ = 2(mod 8) and ¢ > 34.
Assume that ¢ = 2 + 8§(mod 32) where § € {0,1,2,3}. Letn > (3c+2)/8
be an integer and let A : [1,n] — [0, 1] be a 2-coloring of [1,n]. Without loss of
generality, we may assume that

A1) =0. (1)

Suppose, for contradiction, that there doesn’t exist any monochromatic solution
to the equation L(c, 4).
Since 1+ 1+ c=4- %2, we have A(%42) # A(1) = 0, and hence

atl =y @
Similarly, as 42 4 <22 4 c = 4. 3612 and <f8 4 3¢2 4 ¢ = 4. 3¢£2 we must
have

a2t =o )
and

A =1 @

Observe that
1<9-26€ °1’2 45 < c-zz +46 < 3°;’2.
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Combining (3) and

2 2
(c-‘li- _46)+(c+ +46)+c=4-3c;-2,

we have
c+2

4
Below we distinguish two cases.

Case3.1. A(&2 - 46) =1.

c+

2
A( 7

+48)=1.

—48) =1or A(

Clearly,
c+2 c+2 3c+2-86
( 1 “46)+('—4‘)+C—4'——8——,
it follows that 3¢ 19 — 85
c+2—
A=) =0 ®

by (2) and A(££2 — 46) = 1. Since A(3F2) = A(3et2=88) = 0 by (3) and

3c+2—-86 6+ 86 3c+2
(c+8 )+(c+ 8+ y+c=4. c;- ,

we must have
c+6+85

A( 8

)=1. (6)
As A(££2) = 1by (2), and

4 1lc+ 10+ 86
8 4 - 32 ’

c+6+85 c+2

we have
1lc+ 10+ 84

A=

)=0. )

Observe that

3c+2-8  _, lle+10+85

(14+26) + 8 c=4—a

thus we have
A(l+20) =1.

by (5). Note that

.c+2+46

(1+26) + (1 +26) +e =4 ——,
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then we have A(£12+48) ot A(1 + 25), hence

c+2+46
4

Recall A(1) = 0by (1). As1+ (1 +40) + c=4. <2248 ye haye

A( ) =0.

AQl +46) = 1.

Also, by (14 46) + (1 +46) + c = 4 - <28 e have

c+2485
4

If A(2e£8180) = 0, then we establish that

A( ) =0.

c+2+85 5c+6+86
(1 )
4 18

is a monochromatic solution to L(c, 4) from

c+24 8 5c+ 6+ 86
1+_'4__+C—4'T-

On the other hand, if A(@if—s'tgﬁ) = 1, then we have

(c+6+85 c+6+8 5c+6+86)
8 ’ 8 ' 16
is a monochromatic solution to L(c, 4) by (6) and

c+6+4+8 c+6486 5c+ 6 + 86
8 + 8 +C—4"—1—6—-.

In either case, we get a monochromatic solution to L(c, 4), contradicting our as-

sumption.
Note that all above numbers are positive integers not exceed 3¢42 as ¢
2+ 85(mod 32) and ¢ > 34.

Case2. A(S2 +46) = 1.

By
(1+85)+(1+86)+c=4.-°+—24+—1@,
we have 9
AL+80)=0# AT +48)=1 @®)
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Since A(1) = 0 by (1), and

.c+2+86

1+(1485)+c=4 TR

we obtain that A(<t2t88) = 1. Similarly, as

(1+40)+ (1 +48) +c=4- c—+241§—‘i
and 2+46
1+(1+46)+c=4 53“—4"’—,
we must have 94 45
A(”—4+—-) =1#A(1+46)=0 ©)
Therefore we have
A(1+26)=0 (10)
by
(1+25)+(1+25)+c=4.ii+—46-.

Combining A(£t8) = 1 by (4) and A(<4E48) = 1 by (9) with

c+6 c+2+46 11c+ 10486
we establish that 1 10+ 85
ARt E 20y o, (n
32
Observe that
3c+2-85 11c+10+ 86
1426+ —F——+e=4- —H—,
then we have 049 — 88
A=) =1 (12)

by (10) and (11). Clearly,

c+2-85 c+2-8 3c+2— 86
7 T4 test—g o

it follows that
c+2—-85

A )

) =0. (13)
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Since (11) and

c+2~-80 c+6+246 _, 11c+10+86
n + 3 +c=4 — 3
we have 6+ 246
Finally, by
c+6+246 c+6+246 5¢c+ 6 + 240
3 + 3 -f-c—4.—16 ,
ore can find that
5¢c+ 6 + 240 c+ 64246
A ) =0 £ M),

Recall A(1 + 86) = 0 by (8) and A(t2=88) = 0 by (13), we have a monochro-

matic solution
c+2—-86 5¢c+6+246

to L(c, 4) from
1485+ c+24— 86 te=4d. 50+§56:l-246,

which contradicts our assumption.
One can check that all above numbers are positive integers not exceed 3—"5',"3

asc =2+ 86(mod 32) and c > 34.

Combining the above cases, we obtain that R(c,4) < 32 forc = 2 +
85(mod 32) and ¢ > 34.
Below we assume that ¢ # 2 + 85(mod32). Leti = min{j > 0:c—j =
2 + 8(mod 32),6 € {0,1,2,3}}. Clearly, i is even. Thus, by Lemma 1 with
k=4andb=i/2,
R(c,4) < R(c —i,4) +i/2.

Then 3c—9)+2 i S8c+i+2
c—1)+ ] c+ 1
R(c,4) < 8 + 5= 8 .
hence R(c,4) < [(3c + 2)/8]. Now we complete the proof. ]
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