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In this note, only graphs without multiple edges or loops are considered.
For a graph G, the complement of G is denoted by G. A cycle on i vertices
is denoted by C;. A star graph, denoted by S;, is an acyclic connected
graph on n vertices with one vertex of degree i — 1. A book graph, denoted
by B, has i + 2 vertices and is the result of a single vertex being connected
to every vertex of a star Siy1. The cardinality of a set S is denoted by |S|.
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We denote by ¢(G) and g(G) the lengths of the longest and shortest
cycles of G, respectively. A graph of order n is pancyclic if it has cycles
of every length I, 3 < ! < n and weakly pancyclic if it has cycles of every
length I, g(G) <1 < ¢(G).

For graphs G; and G2, the Ramsey number R(G;, G2) is defined to be
the least positive integer n such that any graph G on n vertices either G
contains a copy of Gy or G contains a copy of G2. A graph is called a
{G1, G2)-graph if neither G contains G nor G contains G3. A (G1,Gs)-
graph on n vertices is denoted by (G1,G2;n)-graph. The set of all noniso-
morphic (G1, Ga;n)-graphs is denoted by R(G1,Gz) or R(G1,Ge;n).

In [6], it was proved that

Theorem 1 [6] If m > 7 is an odd integer and n > 4m — 13, then

R(CmyBn) =2n+3; ifn>1 and m > 2n+ 2, then R(Cp, By) =2m - 1.

In [11], some small Ramsey numbers R(Cp,, Bn) were obtained. By
using the algorithm described in [11], it is hard to obtain more Ramsey
numbers R(Cy,, Bn). In this note, we improve the result of Theorem 1
slightly.

Theorem 2 R(Cp,By)=2m—1form2>2n-12>7.

With the help of computers, we also obtain some small cycle-book Ramsey
numbers.

2 Proof of Theorem 2

In order to prove Theorem 2, we need the following Lemmas. Note many
related results were gathered in (3].

Lemma 1 (Burr [4]) For a connected graph G, if |V(G)| 2 s(F), then
R(F,G) 2 (x(F) = D{IV(G)| = 1) + s(F), if [V(G)] 2 s(F), where x(F) is
the chromatic number of F' and s(F) the minimum number of vertices in
some color class under all vertez colorings by x(F') colors.

Lemma 2 (Bondy [1]) . Let G be a graph of order n. If §(G) 2 n/2,
then either G is pancyclic or n is even and G = Ky, 3 /2.

Lemma 3 (Brandt [2]) Every nonbipartite graph G of order n with
§(G) = (n + 2)/3 is weakly pancyclic with g(G) = 3 or 4.

Lemma 4 (Dirac [5]) Let G be a connected graph of order n > 3 with
8§ =8(G) > 2. Then c(G) > 6 +1 and if G is 2-connected, then c(G) 2
min{26,n}.
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Lemma 5 (Lawrence [7])

_ [ m, for m > 2n,
R(Cm, K1,n) = { 2n+1, foroddm<2n—1.

Proof of Theorem 2. By Lemma 1, R(Cy, B,) > (x(Ba) =1)(|V(C)|—
1) 4+ s(B,) = 2m — 1. We only need to show that R(Cp,, Bp) < 2m — 1.

Firstly, we prove that R(Cp,, Br) = 2m — 1 for m > 2n > 4. Suppose
to the contrary that there exists a graph G on 2m — 1 vertices such that
G € R(Cm,Br) and m > 2n > 4. Then by Lemma 5, we have §(G) >
2m—1-1—(R(Cm, K1,n)—1) = m—1. It is easy to see that G is connected.
Since G contains no By, then G is a nonbipartite graph. Otherwise, there
is a partite set with order more than n + 2. By Lemma 3, G is weakly
pancyclic with g(G) = 3 or 4. By Lemma 4, ¢(G) > m. Thus, G contains
a Cn,, a contradiction.

Secondly, we will show that R(Cp,Bp) =2m—-1form=2n-12>17.
Suppose to the contrary that there exists a graph G on 2m -1 =4n -3
vertices such that G € R(Cp,, B,). Since m is odd and by Lemma 5, we
have §(G) 2 2m -1 -1~ (R(Cm, K1,n) — 1) = 2n — 4. Now, we have the
following Claims.

Claim 1 G is connected.

Proof. Otherwise, there are at least more than two components. Let H,
be a component of G and Hy = G — H;. Since §(G) > 2n — 4, we have
IV(H;)| > 2n -8 for i = 1,2. Since G contains no B,, we have H; are
complete graphs for ¢ = 1,2. Since §(G) > 2n — 4, we have max(|V (H;)|) >
2n—1,i = 1,2. Then we have that G contains a cycle of order m = 2n -1,
a contradiction. a

Claim 2 G i3 2-connected.

Proof. Otherwise, let v € V(G) be a vertex cut, H; be a component of
G - {v} and Hy = G— {v} — H;. We have |V(H;)| > 2n—-4fori=1,2.
Since G contains no B, H; is complete graph for ¢ = 1, 2. Since G contains
no Cr,, we have max(|V(H;)|) < 2n - 2,i = 1,2. Hence H; & Kop,_; for
i = 1,2. Since d(v) > 2n — 4, we have that either G[V(H;) U {v}] or
G[V(H2) U {v}] contains a Cy,, a contradiction. o

Now, we return to the proof of the theorem. By Lemma 4, ¢(G) > 2(2n -

4) = 4n — 8 > 2n — 1. Since G contains no B, then G is a nonbipartite
graph. By Lemma 3, G contains C,,, a contradiction. ]
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3 Some small Ramsey numbers R(Cy,, B;)

We use the powerful tool nauty to generate all nonisomorphic graphs on
10 vertices and shortg[8] to reject graph isomorphism. By the definition
of R(Cm,B), we need to extend R(Cp,Bn;t) to R(Cpm,Byn;t + 1) by
increasing ¢t until R(Cp,,Bp;t + 1) = 0. In order to reach this goal, we
apply one-vertex extension method similar to [11]. For some m and n, the
values of R(Cy,, By,) are shown in Table 2 and data for them in Table 1,
and the statistics for |R(Cp,, Br)| gives Theorem 3.

Table 1: The number of nonisomorphic (Cy,, By; k)-graphs

F__TR(Cs,Be)l_R(Ce, B)]_TR(Ca, Bs)] _[R{Cs, Ba)l_TR(Co, Brol]
10 3333 18180 28706 30247 30247
11 695 14075 87449 139691 146332
12 243 2195 66539 451327 719784
13 109 334 10845 371597 2511619
14 23 40 1491 55836 2217275
15 5 5 100 7469 298812
16 0 0 2 1339 21008
17 0 0 0 69 5776
18 0 0 0 0 189
19 0 0 0 0 0

% R(Cs, Bs)] _TR(Ca, Bo)]_IR(Cs, B1)| _[R(Cr, Ba)| [R(Cr, Br)]
10 4944 36585 143905 13436 52040
11 1860 17240 207310 7831 75562
12 113 3915 172063 2153 40245
13 34 519 839013 403 9199
14 4 281 1718 206 13778
15 0 135 1044 81 407
16 0 21 601 12 167
17 0 2 306 0 27

18 O 0 115 0 5

19 0 0 14 0 0

20 0 0 0 0 0
E_TR(Cr, Ba)l_[R(C: Ba) _[R(Co, Be)] [R(Co, Br)l

10 76020 20018 196262 535878

11 288978 813895 122880 884018

12 434614 1320322 47997 496324

13 324618 1265049 10826 198506

14 479028 180598 326 35879

15 80038 3377 158 1368

Continued on next page
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Table 1 — continued from previous page

k__[R(C7,Bs)| [R(Cs,Bs)l [R(Co,Bs)l |R(Co,Br)l

16 158149 1995 23 816
17 101 1129 2 437
18 5 550 0 199
19 0 228 0 25
20 0 32 0 2
21 0 5 0 0
22 0 0 0 0

Theorem 3 R(Cs,Bs) = 16, R(Cs,B7) = 16, R(Ce,Bs) =
R(CG’BQ) = 18, R(C6yBIU) = 19, R(CBvB5) = 15, R(CSaBS) = 18,
R(Cs,B7) = 20, R(C7,Bg) = 17, R(C7,B7) = 19, R(C7,Bs) =
R(Cs, Bs) = 22, R(Cy, Bg) = 18, R(Cy, By) = 21.

Table 2: Known and new values of R(Cr,, B,) for m > 3,2 < n < 12.(New
values and lower bounds are in bold font.)

m 3 4 5 6 7 8 9 10 11 12
n
2 7T 7T 9 11 13 18 17 19 21 23
3 9 9 10 11 13 15 17 19 21 23
4 1 11 11 12 13 156 17 19 21 23
5 13 12 13 14 15 158 17 19 21 23
6 15 13 15 16 17 18 18 21 23
7 17 16 17 16 19 20 21
8 19 17 19 17 19 22 >23
9 21 18 21 18 >25 > 26
10 23 19 23 19 > 28

4 Lower bounds for R(C,, B,) and R(C,, B,—;)
Theorem 4 Ifn > 3, then R(Cy,B,) 2 3n—2, R(Cp,Bp-1) > 3n 4.

Proof. The graph 3K,_; is a (Cy, Bp;3n — 3)-graph, hence R(C,, B,) >
3n—2. The graph obtained by adding one vertex v to the graph 3K,,_5 such

that v is adjacent to each vertex of 3K,_» is a (Cr, Bp_1;3n — 5)-graph,
hence R(Cr, Bn-1) = 3n — 4. 0
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5 Summary of R(Cy,, B,)

Table 2 shows the known and new values of R(Cp,, By) form 2 3,2 <n <
12 (see [11, 10]). By Theorem 4 we can give lower bounds for some cycle-
book Ramsey numbers. We list four such bounds in Table 2. Although we
think these four lower bounds are interesting and may be the exact values,
but it seems difficult to decide them by computing.
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