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Abstract

In this paper, the class of (m,n)-ary hypermodules is introduced
and several properties and examples are found. (m,n)-ary hyper-
modules are a generalization of hypermodules. On the other hand,
we can consider (m,n)-ary hypermodules as a good generalization
of (m,n)-ary modules. We define the fundamental relation €* on
the (m,n)-ary hypermodules M as the smallest equivalence relation
such that M/e* is an (m,n)-ary modules, and then some related
properties are investigated.

1 Introduction

The notion of an n-ary group was introduced by Dérnte [6], which is a
natural generalization of group. The notion of n-ary hypergroup was first
introduced by Davvaz and Vougiouklis as a generalization of n-ary group
[3], and studied mainly by many authors [4, 5, 7, 8, 9).

Let H be a non-empty set and h be a mapping h: H x H — p*(H),
where p*(H) is the set of all non-empty subsets of H. Then h is called a
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binary hyperoperation on H [1]. We denoted by H™ the cartesian product
H x ... x H, where H appears n times and an element of H" will be
denoted by (z1,...,Zn), where z; € H for any i with 1 < 7 < n. In general,
a mapping h : H® — p*(H) is called an n-ary hyperoperation and n is
called the arity of hyperoperation.

Let A be an n-ary hyperoperation on H and Aj,..., A, be non-empty
subsets of H. We define

h(Ay, ..., An) = U{h(ml,...,zn)lx,~ € A;i=1,.. .,n}.

We shall use the following abbreviated notation: the sequence z;, Tit1, ..., T;
will be denoted by zJ. For j < 4, z] is the empty set. In this convention

h(zls ey Tiy Yigly e vyj)xj'i-la"-’zn)

will be written h(z}, v, ,,20,).
If h is an n-ary groupoid and ¢t = {(n — 1) + 1, then the t—ary hyperop-
eration h(;y given by

hay (@) = A(A(. .., A(A(E2), T25T s D Tty ety 42

will be denoted by h(.

A non-empty set H with an n-ary hyperoperation h : H* — P*(H)
will be called an n-ary hypergroupoid and will be denoted by (H,h). An
n-ary hypergroupoid (H, k) will be an n-ary semihypergroup if and only if
the following associative axiom holds:

h(aih R, 2253Y) = (el (), 2555)

n+i
for every i,j € {1,2,...,n} and x1,%2,...,Z2n—1 € H. An n-ary semihy-
pergroup (H, k), in which the equation b € h(a}™?,z;,a?,;) has a solution
z; € H for every ay,...,0i-1,8i41,.-.,8n,0 € H and 1 < i < n, is called

an n— ary hypergroup.

A recent book [2] is devoted especially to the study of hyperring theory.
Several kinds of hyperrings are introduced and analyzed. The volume ends
with an outline of applications in chemistry and physics, analyzing sev-
eral special kinds of hyperstructures: e-hyperstructures and transposition
hypergroups. Now, we consider the notion of (m,n)-ary hyperrings.

Definition 1.1. An (m,n)-ary hyperring is an algebraic hyperstructure
< R, f,g >, which satisfies the following axioms:

(1) (R, f) is an m-ary hypergroup,
(2) (R,g) is an n-ary hypersemigroup,

274



(3) the n-ary hyperoperation g is distributive with respect to the m-ary
hyperoperation f, i.e.,

g(ai—l, f(x;n): a?-i-l) = f(g(a'i—la z, a'?+1)7 oe 1g(ai—l’zm1 a?-{-l))y
for every ai"!,a?,,,27 € R, 1 <i<n.
< R, f,g > is called an m-ary hyperring if m = n. An m-ary hyperring
R is a hyperring if m = 2.

Definition 1.2. Let M be a non-empty set. Then, M = (M,h,k) is
an (m, n)-ary hypermodule over an (m,n)-ary hyperring R, if (M, h) is an
m-ary hypergroup and the map

k:Rx...x RxM — p*(M)
Nt

n—1
satiessfies in the following conditions:

(1) k(™Y (D)) = h(k(rT ™ 21), - K™ 2m)),

(2) k(i (7Y, it @) = k(T 81,70 @) (e 8, R 2)),
(3) k(ri™h g(ri™™ 1), rim =2, 2) = k(r ™1, k(rit ™2, z)).
If k is a scalar n-ary hyperoperation, Si,...,S,—1 are non-empty sub-

sets of R and M; C M, we set

k(S1,..., 801, M) =U{k(ry,...,"n—1,2)| 1 € S;yi=1,...,n—=1,z € M;}.
An (m,n)-ary hypermodule M is an R—hypermodule, if m =n = 2.

ExAMPLE 1. Let R be a hyperring and A{n be an R—hypermodule. Then,

R with m-ary hyperoperation f(r]*) = Zr,-, and n-ary hyperoperation

i=1

n
g(r}) = Hri, is an (m,n)-ary hyperring. Also, M with hyperoperation

i=1
m
h with h(zT*) = Zzi, where z; € M, is an (m,n) hypergroup. Now, we

i=1
define the scalar n-ary hyperoperation k& with
n
k(?’], s ;"'n—l;w) = (Hri) - Z.
1

Then M is an (m,n)-ary hypermodule over (m,n)-ary hyperring R.
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EXAMPLE 2. Let (R, +,-) be a hyperring and (M, +) be an R—hypermodule.
If N is a subhypermodule of M then set:

m
h(zT) = =i+ N, Yzl € M,
i;l
ey =)_m, Vr*€R,
=]
g@) =[] Vit eR,
=1 n-1

k(rp~hz)=()_r)-z+N, Vri™ €R, Yz e M.

i=1

Then (M, h,k) is an (m,n)-ary hypermodule over (m,n)-ary hyperring
(R, f,9)

Definition 1.3. Let (M, h, k) be an (m, n)-ary hypermodule over an (m, n)-
ary hyperring R. A non-empty subset N C M is called an (m,n)-ary
subhypermodule of M, if (N,h,k) is an (m,n)-ary hypermodule over the
(m,n)-ary hyperring R.

Let (My,hq,k) and (Ma, ha, k) be two (m, n)-ary hypermodule over an
(m,n)-ary hyperring R. A homomorphism from M; to M; is a mapping
¢ : M; — M such that

(1) ¢(hi(a1,...,am)) = ha(é(a1),. .., ¢(am)),
(2) ¢(k(r1, ... Tn-1,0)) = k(r1,.. -, Tn-1,$(a)).

Lemma 1.4. Let (M, h,k) be an (m,n)-ary hypermodule over an (m,n)-
ary hyperring R. Then N is an (m,n)-ary subhypermodule M over the
(m,n)-ary hyperring R if and only if the following conditions hold:

(1) If the equation b € h(ai™!,zi,al%,) is solvable at the place i = 1
and ¢ = m or at least one place 1 < i < m, for every ai,...,a;_1,
a,~+1,...,am,b€ N.

(2) For anyry,72,...,Ta-1 € R andy € N imply that

k(rlsr2$ oy To—1, y) g N'
Proof. N is an m-ary hypergroup by Theorem 2.3 of [3] , since k is a closed

scalar n-ary hyperoperation on N, then N is an (m, n)-ary subhypermodule
over (m,n)-ary hyperring R. O
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Lemma 1.5. Let (M, by, k) and (Ma, ha, k2) be two (m,n)-ary hypermod-
ules over an (m,n)-ary hyperring R and ¢ : My — M, a homomorphism.
Then

(1) If S is an (m,n)-ary subhypermodule of M; over an (m,n)-ary hy-
perring R, then ¢(S) is an (m,n)-ary subhypermodule of M.

(2) If K is an (m,n)-ary subhypermodule of Mz over an (m,n)-ary hy-
perring R, such that 1 (K) # 0, then ¢=1(K) is an (m,n)-ary sub-
hypermodule of M,.

Proof. (1) We know that ¢(S) is an m-ary subhypergroup of M. Now, let
T1,72,...,Tn—1 € R and y € ¢(S), then there exists z € S such that ¢(z) =
y. Hence k(ry,...7n_1,y) = k(r1,...,7n-1,0(z)) = &(r1,...,Tn-1,2) €
#(S).

(2) The proof of this part is similar to (1). a

Definition 1.6. Let (M, h, k) be an (m, n)-ary hypermodule over an (m, n)-
ary hyperring R. An equivalence relation p on M is called compatible if
ay p bi,..., am p by, then for all @ € h(ay,...,an) there exists b €
h(bi,...,bn) such that apb, and if ry,...,7n—; € R, and zpy, then for
all a € k(ry,...,7n—1,z) there exists b € k(ry,...,7n—1,¥) such that apb.

Let (M, h,k) be an (m,n)-ary hypermodule over an (m,n)-ary hyper-
ring R and p be an equivalence relation on M. Then p is a strongly com-
patible relation if

aipb; forall 1<i<m then, h(aj,...am)p h(b,...,by),
and for every 7y,...,7,—1 € R and zpy, then
k(riy...,Tn1,2) P (71, .y Tne1, ¥).
We recall the following theorem from [9].

Theorem 1.7. Let (H, f) be an m-ary hypergroup and let p be an equiva-
lence relation on H. Then the relation p is strongly compatible if and only
if the quotient (H/p, f/p) is an m-ary group.

Now, we introduce the strong compatible relation I" on an (m,n)-ary
hyperring R.

Definition 1.8. Let (R, f, g) be an (m,n)-ary hyperring. For every k € N
and I§ € N, when s = k(m — 1) + 1, we define the relation Tk;uq, as follows:

z I'ryy y if and only if there exist =i € R, where t; = l;(n — 1) + 1,
i=1,...,s such that

{z,y} C fiy(ua,s... u,),

277



where for every i = 1,...,s, u; = gq,)(zi).
Now, set Ty = U Ciyg and T = U I'x. Then the relation T is

13eN keN-
reflexive and symmetric. Let I'* be the transitive closure of relation I'.

Theorem 1.9. [10]. The relation T* is a strongly compatible relation
on both m-ary hypergroup (R, f) and n-ary semihypergroup (R, g) and the
quotient (R/T*, f/T*,g/T*) is an (m,n)-ary ring.

Theorem 1.10. Let (M,h,k) be an (m,n)-ary hypermodule over an
(m,n)-ary hyperring R and p be an equivalence relation on M. Then the
following conditions are equivalent.

(1) The relation p is strongly compatible.
(2) If r1,...,mn-1 € R, 27",0,b € M and apb, then for every
(i=1,...,m), we have
h(xi_laa)x?ll) 5 h(:z:‘i"l,b, xﬁ-l)

and B
k(rly' .. )rn—ha) p k(rl" o arn—lib)-

(8) The quotient (M/p,h/p,k/p) is an (m, n)-ary module over an (m,n)-
ary hyperring R. In the other word, M is an m-ary group and the
scalar n-ary hyperoperation k is singleton.

Proof. We show that (2) & (1) & (3).
(1) = (2) It is straightforward.
(2) = (1) Let a; p b;, wherei=1,...,m. By (2) we have

h‘(ala""am) 5 h(al,--'aam—l)bm)
ﬁ h(a'la vee ) Bm—2, bm—l,bm)
? h(als b’Z) [ abm)
5 h(biy. .. bm)-

Since 7 is transitive, thus p is strongly compatible for h.
Now, let 71,...,7n—1 € R and apb, hence

k("'ls v ,'rn—l,a) ? k(rla- o arn—lvb)~

Since 7 is transitive, then p is strongly compatible.
(1) = (3) Define

h/p(p(ar), .-, p(am)) := {p(a)la € h(a1, ..., am)} = p(h(aT"))
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and
k/p(r1,...,mn-1,p(a)) := {p(z)|z € k(r1,...,7n-1,a)} = p(k((r} ", 0a)).

Since p is a compatible relation, then we conclude that h/p and k/p are
well-defined. Also p is strongly compatible, so (M/p,h/p) is an m-ary
group by Theorem 1.7.

(1) Now, we have

h/p(k/p(r?™2, p(x1)), - .. k/p(r?™2, p(zmm)))
= h/p(p(k(r1,21)), ..., p(k(rF 2, Zm)))

= p(k(r7 ™", h(zT")))
= U olkt772))

z€h ()
In the other hand
k/p(r? ™ b p(p(21), - ., p@m))) = k/p(r7 ™, p(R(2T*)))
= p(k(r} ™", hp(21), .., P(2m)))

= U olkti2).

z€h(zT)

(2) We have

k/p(ri”!  f(57) i ,P(-"?))
= p(k(ri™, f(sT), 771 2))

= p(h(k(rl 151, ri+1 ,.’L‘), s ’k("'i-l7 smv"'?ﬁla z))).

In the other hand

B/ p(k/p(rs™Y, 51,7250, p(2)s -, K/ (P2 8my 7R, (2)))

= h/p(p(k(ri" 81,77t 2), o k(Y Sy TR 2)))

= P(h(k("':_l, 81, "'?4._111 -'L'); k("'l—l ySm, 7'i+1 ) x)))

(3) We have

k/p(ri™t, g(rit™ 1), ritm =2, p(z)) = p(k(ri~?, g(rit™1), ritm=2 g)),
In the other hand

k/p(ry ™t k/p(rar™=2),p(x))) = k/p(r?*, p(k(rit™=2, z)))
= p(k( n—l’ (k(rgl+m—2, x))).
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(3) = (1) Now, let (M/p,h/p,k/p) be an (m,n)-ary module. Let a; p b;,
where i = 1,...,m, since (M/p, h/p) is an m-ary group, so

hip(p(ar), .., p(am)) = {p(z) | = € h(a1, ..., am)}

and
h/p(p(b1),...,p(bm)) = {p(z) | = € h(br,...,am)}

are singleton. Thus, for every y € h{ay,...,am) and z € h(by,...,by) we
have h/p(p(a1), ..., p(am)) = p(y) and h/p(p(b1),...,p(bm)) = p(z). But
p(a;) = p(b;) and so we obtain p(y) = p(2) for every y € h(as,...,an) and
z € h(by,...,bm). Therefore h(ay,...,am) B h(b1,...,bm).

Now, let 7,...,7n—1 € R and apb, since (M/p,h/p, k/p) is an (m,n)-
ary module over (m,n)—ary ring R, so k/p(ry,...,Tn-1,p(a)) = {p(z)|z €
k(r1,...,7n-1,a} and k/p(r1,...,Tn-1,p(b)) = {p(¥)|y € k(r1,...,Tn-1,b}
are singleton. Thus for every z € k(ry,...,7n-1,a) and y € k(r1,...,7n—1,b)
we have (k/p(r1, ..., Tn-1,p(a)) = p(z) and (k/p(r1, . .., Tn—1, p(8)) = p(y)-
But p(a) = p(b) and so p(z) = p(y) for every z € k(r1,...,mn-1,a) and
y € k(r1,...,7n-1,b). Therefore k(ry,...,7n-1,8) p k(r1,...,7n_1,b). O

Theorem 1.11. Let (M, h,k) be an (m,n)-ary hypermodule over (m,n)-
ary hyperring (R, f,g) and & be a strongly compatible relation on f and
g. Let p be a strongly compatible relation on h such that p(k(r] ) =
k(6(r1),-..,6(rn—1), p(z:)). Then (M/p,h/p,k/p) is an (m,n)-ary module
on (m,n)-ary ring (R/8, f/é,9/6).

Proof. By Theorem 1.9., we have the quotient (R/4, /4, g/d) is an (m,n)-
ary ring. Also, we know (M/p, h/p) is an m-ary group, by Theorem 1.4.
Define the scalar n-ary hyperoperation

k/p(8(r1),...,8(rn=1), p(x)) = p(k(r1,...,Tn1,2)).

Since p(k(r}!, z)) = k(6(r1),...,6(rn-1), p(z)), by Theorem 1.10, k/p has
all scalar n-ary hyperoperation properties. O

Let R be a hyperring and M be a hypermodule over R. We recall the
definition of relation € on M as follows [12}:

n ny ki
1. 1 _ I —
TEYy & T,Y € § :miv m;=m; or m;= Z(H mijk)zi:
i=1 J=1 k=1

m; € M, :t,;jkER, z € M.

The equivalence relation e* (transitive closure of €) was first introduced
by Vougiouklis, and studied mainly by many authors concerning hypermod-
ules. The fundamental relation €* on M, defined as the smallest equivalence
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relation such that the quotient M/e* be a module over the corresponding
fundamental ring such that M/e* as a group is not abelian, see 11, 12] .

Now, let M be an (m,n)-ary hypermodule over an (m,n)-ary hyper-
ring R. We define the relation ¢ on M.

Definition 1.12. Let M be an (m, n)-ary hypermodule over an (m, n)-ary
hyperring R. We define

{x1y}Ch(a)(uI)a 7‘=a.(m—1)+1
wi=m; or k(v lz), zieM
Tey <= ii5e
“—f(b.j)(wt ’)’ Sij = z](m—1)+1
Wijk = g(cuk)(z;k?,k)) tijk = Cijk(n - 1) +1, Tijkt € R.

The following example shows that the relation € on an (m,n)-ary hy-
permodule is not transitive, in general.

ExaMpLE 3. Let H = {a,b,c,d} and h(a,...,a) = {b,c} and for every
zP* € M, h(zT*) = {c,d}, where z; # @, and 1 < i < m. Then (M, k) is an
m-ary senuhypergroup If R be an arbltrary (m,n)-ary hyperring then for
every 7771 € Rand z € M, we define k(r?~!,z) = {c,d}. Then (M, h,k) is
an (m, n)-ary hypermodule. We have bec and ced so be*d but b £d. Hence
€ is not transitive.

Theorem 1.13. The relation €* is a strongly compatible relation on M, as
(m,n)-ary hypermodule, on both m-ary hyperoperation h and scalar n-ary
hyperoperation k.

Proof. If @) €* by, ... ,am €* by, then €*(a1) = €*(b1),...,€*(am) = €*(bn).
For every a € h{a;,...,an) and b € h(by,...,b,) we have
e*(a) =e*(h(ai,...,am))
= hfe*(e*(a1),...,€*(an))
= h/e*(e*(b1),...,€* (b))
=e*(h(b,...,bm))
= e*(b).

Now, let r1,...,7pn—1 € R, a3,b; € M and a,e*b;, then for every a €
k(ry,...,Tn_1,a1) and b € k(ry,...,7n—1,b1), we have
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€*(a) =e*(k(r1,...,Ta-1,01))
=k/e*((r1,...,Tn-1,€"(a1))
=k/e*k(r1,... ,Tn-1,€*(b1))
= e*(b).
O

Theorem 1.14. Let (M, h, k) be an (m, n)-ary hypermodule over an (m,n)-
ary hyperring R. Then the quotient (M/e*,h/€*) is an (m,n)-ary hyper-
module over an (m,n)-ary hyperring R, where

h/e*(e*(a1),...,€*(am)) := {€"(a)la € h(a1,...,am)} = €*(h(a]"))
and
k/e*(r1,. .. ,Tno1,€"(a)) := {€*(z)|z € k(r1,...,Tn-1,a)} = € (k{(r] ~1a)).

Proof. We shall use the following abbreviated notation:

the sequence €*(a;), €*(ai+1), . - - , €* (a;) will be denoted by €*3!. Since €* is
a compatible relation, then we conclude that h/¢* and k/e* are well-defined.
Also

(1) We have
hfe*(k/e*(r] 1 et (z)),. .., ke (r?1, e*(zm))
= h/e*(e*(k(rF72,21)), - .., € (R(rP ™Y, Tm)) = € (k(r} 7", R(zT"))
= | e®&Ere).
z€h(zT)

In the other hand

k/e*(ri=t h(e*(z1), .. ., € (zm))) = k/e" (177} €*(h(2T")))
= e‘(k(r{"l, h(e*(z1),-.., € (Zm))

= U €' (k(r7~1, z)).

z€h(z)

(2) We have

k/e‘(ri_%v f(sT)yri, € ()
= 6‘(’6(7';—1, f(sT)yrm-lv z))

= e*(h(k(ri™, 81,721, T), 0 - k(ril 8m, Ty, 2)))-
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In the other hand

hfe*(k/e*(ri™", 81,7001, € (2)), - - K/€ (T 8, T € (2)))
=h/e* (e*(k(r'i_l,sl,r;‘_l_'ll,x), cens e*(k(rl"'l,sm,r?_'_'ll,x)))
= e*(h(k(ri'l, s1, r?_,'_'ll,x), vy k(r}"l, S, r;‘_,_‘ll, z))).

(3) We have

k/e*(rih g(rim ) rit 2 e (@) = e (k(riTh g(rit ), riE 2, 1)),

i+m
In the other hand
kfe*(ri ™) k/e*(rptm2,e*(2)) = k/e*(r7 71 € (k(rit™ 2, 7))
= e*(k(r7™", (k(rpt™2,2))).
a

The natural map = : M — M/e*, where n(z) = ¢*(z) is an onto
homomorphism.

Definition 1.15. Let (M), h;, k1) and (M2, ke, k2) be two (m,n)-ary hy-
permodules over an (m,n)-ary hyperring R and let ¢ : M; — M; be a
homomorphism. Then, the kernel ¢ is defined by

kerd = {(a,b) € My| ¢(a) = ¢(b)}.
It is easy to see that kerg is a compatible relation.

Theorem 1.16. Let (M), hy,k;) and (Mz, he, k3) be two (m,n)-ary hy-
permodules over an (m,n)-ary hyperring R, and let ¢ : My — M, be a
homomorphism. Then there exists a compatible relation § on M, and a
homomorphism o : My /0 — M, such that pow = ¢.

Proof. We consider 8 = ker¢. Now, let 8(a) € M;/60 and define ¥(6(a)) =
#(a). a
Theorem 1.17. Let p and 6 be compatible relation on (m,n)-ary hyper-
modules (M, h, k) over an (m,n)-ary hyperring R, such that p C 6. Then,
there exists a compatible relation p on (M/p,h/p,k/p) such that (M/p)/u
is isomorphic to M /6, as (m,n)-ary hypermodules.

Proof. We consider the map ¢ : M/p — M/6 by ¢(p(z)) = 6(z). Since
p C 8, ¢ is well-defined. Clearly ¢ is a homomorphism. Now, by Theo-
rem 1.16, there exists a compatible relation x and a monomorphism 1 :
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(M/p)/p — M/ such that ¥ o7 = ¢, and so ¥ is an isomorphism as
(m, n)-ary hypermodule. O

Let (M, h1,k1) and (Mg, ha, ka) be two (m,n)-ary hypermodules over
an (m,n)-ary hyperring R. Define the direct hyperproduct (M; x My, hy x
hg, k1 x ko) to the (m, n)-ary hypermodule whose universe is the set M; x M,
and such that for a; € M;, a} € M, 1 <i<m,

(hl X h2)((a11 a’l): [EER) (a‘rm a:n))
={(a,a’) | a € h1(ay,...,am),a' € ha(ay,...,a,,)},

and

(kl X k2)(1‘1, veeyTn=1, (:L', :z:’))
={(a,d) | a € k1(r1,...,Tn-1,%), @ € ka(r1,...,7n_1,2")}.

The mapping m; : M) x My — M;, i = 1,2, defined by m;((a1,a2)) =
a;, is called the projection map on the ith coordinate of M; x M», also the
mapping ; : My x My — M; is an onto homomorphism.

2 Fundamental (m,n)-ary hypermodules

If (M,h,k) is an (m,n)-ary hypermodule, then é denoted the transitive
closure of the relation € = |J,5q €a, Where €o is the diagonal, i.e., €o =
{{(z,z)|z € M} and for every integer a > 1, ¢, is the relation defined as
follows:

ze,y if andonly if  {z,y} C h(a),

for some a € N. If z¢oy (i.e., z = y) then we write {z,y} C u(g). We define ¢*

as the smallest equivalence relation such that the quotient (M/e*, h/e*, k/e*)
is an (m, n)-ary module over an (m,n)-ary hyperring R, where M/e* is the

set of all equivalence classes. The €* is called fundamental equivalence re-
lation.

Lemma 2.1. Let (M, h,k) be an (m,n)-ary hypermodule over an (m,n)-
ary hyperring R, then for every a € N*, we have €, C €4.41.

Proof. Let ze,y, then there exists a € N, and uy,...,u,, where r = a(m —
1) + 1, such that {z,y} C h(s)(u]). By producibility of h, there exist
ul,...,ul, such that u; C h(uj,...,us,). So
{z,y} C h@)(u]) = h@)(u...,ur)
- h(a)(h(u’l, ceoun)ugy . up) = h(,,.,_l)(u"l’,u;).
This means zeq4+1Y. O
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Corollary 2.2. Let (M, h, k) be an (m, n)-ary hypermodule over an (m, n)-
ary hyperring R, then for every a € N, we have ¢; C ¢} ;.

Theorem 2.3. The fundamental relation ¢* is the transitive closure of
the relation ¢, i.e., (¢* =¥¢).

Proof. By Theorem 4.1 of [3], we know that the quotient M/€ is an m-ary
hypergroup, where h/€ is defined in the usual manner

h/€Ez1),. .., €zm)) = {?(y)ly € h(e(z1),. .- 1?(3:111))}
for all z4,...,z,, € M.

Now, we prove that M/€ is an (m,n)-ary hypermodule over an (m,n)-
ary hyperring R. The scalar n-ary hyperoperation k/€ in M /€ is defined in
the usual manner:

k/e(ry,...,Tn-1,€z)) = {W)|y € k(r1,...,7n-1,2)},

for all r1,...,7p—1 € H and z € M. Suppose a € &z), then we have

aez, if there exist z,,...,Zn, such that z; = a,...,2,, = z such that
{zi, i1} € h(s). So every element z € k(r,...,Tn—1,;) is equivalent to
every element to k(ry,...,7n—1,Zit1). Therefore k/e*(r1,...,7rn1,€*(z))
is singleton. So we can write k/e*(ry,...,Tn_1,€*(z)) = €*(y) for all

y €k(ry,...,Tn-1,€*(2)).

Moreover, since k has n-ary hypermodule scalar properties, consequently,
k/€ has (m,n)-ary hypermodule scalar properties.

Now, let 6 be an equivalence relation on M such that M/@ is an (m,n)-
ary hypermodule over an (m, n)-ary hyperring R. Then for all z,,...,%, €
M, we have h/0(0(z1),...,8(zm)) = 8(y) for all y € h(6(z1),...,0(zm)).
Also k/0(ry,...,Tn-1,0(z)) = 0(z), for all z € k(r1,...,Tn-1,6(z)). But
also, for every z1,...,Zm, € M, 71,...,7n_1 € R, A; C 8(z:),(i =
1,...,m) and A C 6(z), we have

h/6(8(z1),...,0(zm)) = O0(h(z1,...,Zm)) = 6(h(A1,..., An))
and
k/0((r1,...,Tn-1,0(z)) = 0(k(r1,..., Tn-1,2)) = 8(k(r1,...,7n-1, A)).

Therefore, 6(a) = 0(u;) for all i > 0 and for all @ € h, or k. So for
every a € M,z € e(a) implies z € 8(a). But 0 is transitively closed, so we
obtain z € €*(a) implies z € 6(a). Hence, the relation ¢* is the smallest
equivalence relation on M such that M/e* is an (m,n)-ary hypermodule
over an (m,n)-ary hyperring R. O
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Theorem 2.4. €* is a strongly compatible relation.

Proof. Since €* is an equivalence relation such that (M/e*, h/e, k/€*) is an
(m,n)-ary module over an (m,n)-ary hyperring R, by Theorem 1.10, €* is
a strongly compatible relation. O

Theorem 2.5. Let (M, h,k) be an (m,n)-ary hypermodule over (m,n)-
ary hyperring (R, f,g). Then, (M/e*,h/€*) is an (m,n)-ary module over
(m,n)-ary ring (R/T*, f/T*,g/T*).

Proof. By Theorem 2.4, €* is a strongly compatible relation on M, and
by Theorem 1.7, (M/e*, h/€*) is an m-ary group. Also, by Theorem 1.9,
(R/T*, f/T*,g/T*) is an (m, n)-ary ring. Now, letr,...,7n_1 ER, 2€ M
and define

ke (C*(71), - . - T (1), €°(2)) i= k(T (r1), - ., T* (Fn1), € (2))-
If ¢ € ha(us,. .., uy) and i € fi, (u,...,u}), then

k(I*(r1) ..., I*(ra-1),€*(2))
g k(fk;l) sy fkn_li ha(uli A 7u"))

= ha(k(fkn e ,fk.._nul)v .. )k(fkn~ . -afkn_uur))'

So, for every ril*ry,....7,_;I*rp_1 and ye*z, we have

E(C*(r1) ..., T (rn1) € ()
c ha(k(fku' . )fkn-nul)a' . ')k(fkn" . afkn-nur))‘

Since M is an (m, n)-ary hypermodule over (m,n)-ary hyperring R, the
properties of M as an (m,n)-ary hypermodule, guarantee that the m-ary
group M/e* is an (m,n) — ary R/I'"*-module. a

Theorem 2.6. Let A = (A, hy, k1) and B = (B, hy, k2) be two (m,n)-ary
hypermodules over an (m,n)-ary hyperring R and let €, €} and €}, g be
fundamental equivalence relations on A, B and A x B respectively. Then
¢: Ax Bfeyyp = A/ey x B/ep,
as (m,n)-ary modules over an (m,n)-ary hyperring R.
Proof. First we define the relation € on A x B as follows:
(a1,b1) € (a2,b2) & a1 €4 a2 and b; €p by,

é is an equivalence relation. We define h on (A x B)/é as follows:

h(é(a1, b1),...,é(@m,bm)) = é(a,b),
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for all a € hi(€)(a1),...,€4(am)), b€ ha(ep(b1),...,e5(bn)), and
k("'l, oo a"'n—l,g(a'l) bl)) = aa’ b)

for all @ € k(r1,...,mn-1,€4(a1)), b € k(r1,...,7n_1,€p(b1)). Since A =
(A,h1,k1) and B = (B, hg, ks) are (m,n)-ary hypermodule, consequently,
(A x B)/€ is an (m,n)-ary hypermodule. Now, let § be an equivalence
relation on A x B such that (A x B)/# is an (m,n)-ary hypermodule.
Similar to the proof of Theorem 2.3, we get

(@1,b1) € (az,b2) = (a1,b1) 6 (az,b2).

Therefore the relation € is the smallest equivalence relation on A x B such
that (A x B)/€ is an (m,n)-ary hypermodule, i.e., € = €%, 5. Now, we
consider the map ¢ : A/€}y x B/ep — (A x B)/e}, g, by ¢(e}(a),ep(b)) =
fo B (av b) o
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