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Abstract

The super (resp., edge-) connectivity of a connected graph is the min-
imum cardinality of a vertex-cut (resp., an edge-cut) whose removal does
not isolate a vertex. In this paper, we consider the two parameters for
a special class of graphs G(Go, G1; M), proposed by Chen et al [Applied
Math. and Computation, 140 (2003), 245-254], obtained from two k-regular
k-connected graphs Gp and G with the same order by adding a perfect
matching between their vertices. Our results improve ones of Chen et al.
As applications, the super connectivity and the super edge-connectivity of
the n-dimensional hypercube, twisted cube, cross cube, Mobius cube and
locally twisted cube are all 2n — 2.
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1 Introduction

We follow [19] for graph-theoretical terminology and notation not defined
here. Throughout this paper, a graph G = (V, E) always means a simple
graph (without loops and multiple edges), where V = V(G) is the vertex-
set and E = E(G) is the edge-set. The symbols K; ,_; and K,, denote a
star graph and a complete graph with order n, respectively. For a subset
X C V(G), the symbol 9g(X) the set of edges incident with some vertex
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in X. £(G) = min{dg(z) + de(y) : e = zy € E(G)} — 2 is the minimum
edge-degree of G.

It is well known that when the underlying topology of an interconnec-
tion network is modelled by a connected graph G, the connectivity «(G)
and the edge-connectivity A(G) are two important measurements for fault-
tolerance of the network [18]. The two parameters, however, have a obvious
deficiency, that is to tacitly assume that all elements in any subset of G
can potentially fail at the same time. To compensate for this shortcom-
ing, Bauer et al [4] suggested the concept of the super connectedness. A
connected graph is said to be super vertex-connected (resp., super edge-
connected), if every minimum vertex-cut (resp., edge-cut) isolates a vertex.
Many super connected graphs have been found in the literature (see, for ex-
ample, [1,2, 3, 4, 5, 6, 7,9, 10, 13, 15, 16]). A quite natural problem is that
if a connected graph G is super vertex-connected or super edge-connected
then how many vertices or edges must be removed to disconnect G such
that every component of the resulting graph contains no isolated vertices.
This problem results in the concept of the super connectivity, introduced
in [13] (see also [3, 15)).

A subset F C V(G) is said to be nontrivial if it contains no Ng(z) as
its subset for some vertex € V(G) \ F, and a subset B C E(G) is said to
be nontrivial if it contains no dg(z) as its subset for some vertex z € V(G).
A nontrivial vertex-set (reps., edge-set) S is called a nontrivial vertex-cut
(resp., edge-cut) if G — S disconnected. The super vertex-connectivity
ks(G) (resp., edge-connectivity As(G)) of a connected graph G is defined
as the minimum cardinality of a nontrivial vertex-cut (resp. edge-cut) if
G has a nontrivial vertex-cut (resp., a nontrivial edge-cut), and does not
exist otherwise, denoted by oo.

Esfahanian and Hakimi [11, 12] generalized the notion of connectivity
by introducing the concept of the restricted connectivity in point of view
of network applications. A set S C V(G) (resp., S C E(G)) is called a
restricted vertex-set (resp., edge-set) if it contains no Ng(z) (resp., 9g(z))
as its subset for any vertex z € V(G). A restricted vertex-set (resp.,
edge-set) S is called a restricted vertex-cut (resp., edge-cut) if G — S is
disconnected. The restricted vertex-connectivity (resp., edge-connectivity)
of a connected graph G, denoted by k.(G) (resp., Ar(G)), is defined as the
minimum cardinality of a restricted vertex-cut (resp., edge-cut) if G has a
restricted vertex-cut (resp., edge-cut), and does not exist otherwise.

The four parameters s, kr, As and A, in conjunction with s and A can
provide more accurate measurements for fault tolerance of a large-scale
interconnection network. What relationships exist between x; and x,, As
and Ar?

From definitions, there is no difference between two concepts of non-
trivial edge-cuts and restricted edge-cuts, and so A;(G) = A(G) for any
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graph G provided they exist. There are a number of journal papers on
As(G) or Ar(G) (see, for example, [2, 3, 11, 12, 14, 17, 20]), due to the fact
Esfahanian and Hakimi [12] solved the existence of A.(G) for a graph G by
proving the following proposition.

Proposition 1 If G is neither Kj, nor K3, then A(G) < A(G) £
£(G).
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Figure 1:  «.(G) does not exist, while x,(G) = 3

However, there is a slightly difference between two concepts of nontrivial
vertex-cuts and restricted vertex-cuts. For example, consider the graph
G shown in Figure 1. The graph G has a unique nontrivial vertex-cut
8§ = {z3,2s5,Z7}, and no restricted vertex-cut, and so x,(G) = 3. A unique
possible restricted vertex-cut is also S, however, it contains Ng(z7) as a
subset. Thus, k.(G) does not exist. Up to now, a few results on x,(G) and
kr(G) for a graph G have been known. Indeed, the existence of x,(G) and
kr(G) has not been yet solved for a general graph G. However, for a graph
G if k. (G) exists then x,(G) exists and x,(G) < «,(G) since any restricted
vertex-cut is certainly a nontrivial vertex-cut. Conversely, if x,(G) does not
exist then x.(G) does not exist. The following proposition holds obviously,
which shows relationships between the super connectivity and the restricted
connectivity.

Proposition 2 Let G be a connected graph, neither K, nor Kj.
Then

(1) k-(G) 2 ks(G) 2 K(G), and if £4(G) > k(G) = §(G) then G is
super-connected.

(2) Ar(G) = As(G) 2 A(G), and if A(G) > A(G) = §(G) then G is
super edge-connected.

In this paper, we consider a special class of graphs, proposed by Chen et
al[10]. Let Go and G, be two k-regular k-connected graphs with n vertices,

and M be an arbitrary perfect matching between the vertices of Gy and
G). The graph G(Go, G1; M) is defined as a graph G with the vertex-set
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V(G) = V(Go) U V(G,), and the edge-set E(G) = E(Go) U E(G1) U M.
We will call the edges in M cross-edges. The well-known n-dimensional
hypercube Q,, the twisted cube T'Qn, the cross cube CQ,, the Mébius
cube MQ,, and the locally twisted cube LTQ,, each of them can be viewed
as a special G(Go,G1; M) for some two graphs Go,G1 and some perfect
matching M. Chen et al [10] have shown that G(Go, G1; M) is super vertex-
connected if and only if either n > k+1lorn=Fk+1 with k = 2, and is
super edge-connected if and only if n > k + 1. Applying these results, they
proved Qn, TQn, CQn and MQ, all are super vertex-connected and super
edge-connected.

We, in the present paper, study the super connectivity and the restricted
connectivity of the graph G(Go,G1;M). As applications, we determine
these parameters for Qn, TQn, CQn, MQ, and LTQ, all being 2n —
2. The above-mentioned Chen et als results will be referred to as direct
consequences of our results.

2 Main Results

The following theorem holds obviously, the proof is omitted here.

Theorem 1  &(G(Go, G1; M)) = NM(G(Go, G1; M)) = k+1 if and only
ifn>k+1forany k > 1. ]

Theorem 2 Let G = G(Go,G1; M) and k > 2. Then

(1) k5(G) = kr(G) =k +1if and only if n = k+ 1 with k > 3;

(2) k+1 < K,(G) < r(G) < 2k if and only if either n > k + 2; and
(3) k4(G) = k.(G) = 2k if each of Gp and G contains no triangles.

Proof (1) Assume k4(G) = £+(G) =k+1. Thenn > k+1 withk > 2
and there is a vertex-cut S with |S| = k + 1 such that every component
of G — S contains no isolated vertices. Clearly, no component of G — S is
included in both Go and G; since k(G;) = k fori = 1,2 and 2k > k+1
for k > 2. Moreover, G — S contains exactly two components, the one in
Gy and the other in G;. Let H be the only component of G — S that is
included in Go. Then Ng(H) = S. Because every vertex in H is matched
by M with a vertex in G1, we have |V(H)| = |Ng(H) NV (G1)|. 1t follows

that
k+1< n=|V(Go)|=|V(H)|+|SNV(Go)l

= |Ne(H)NV(G1)| +1SNnV(Go)l

< IS|=k+1,
which gives n = k+1. Thus, both Go and G; are isomorphic to K41 since
they are k-regular. Since G — S has at least two components and every
component has at least two vertices, thus, 2k+2 = 2n > (k+1)+4 = k+5,
which yields k& > 3.
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Conversely, we clearly have k+1 = £(G) < £,(G) < &.(G) by Theorem
1 and Proposition 2. We want to show %.(G) < k+1if n = k + 1 with
k > 3. Let u and v be any two adjacent vertices in Go and S = Ng(u,v).
Then |S} = k + 1 since both Gg and G; both are isomorphic to a complete
graph Kj41. Moreover, G — § is disconnected since 2n — (k + 1) -2 > 2
for k > 3. It is easy to verify that S is a restricted vertex-cut of G. Thus,
% (G) < S| =k +1.

(2) We note that k > 2 is required only by n > k + 2 and to ensure
2k > k. By the conclusion in (1), we only need to show that x,.(G) <
|S| < 2k for n > k + 2. To this aim, let us arbitrarily choose two adjacent
vertices v and v in Gy and § = Ng(u,v). Then, |S| < 2k. Clearly, G~ S
is disconnected since 2n — (2k) —2 > 2 for n > k+ 2. Since for every vertex
in G, at least one of its neighbors is not in S, S is a restricted vertex-cut
of G. This shows that «.(G) exists and «.(G) < |S| < 2k.

(8) Clearly, the hypothesis that G; contains no triangles and k > 2
implies n > k+2. By the conclusion in (2), which also implies the existence
of k4(G), we only need to prove ,(G) > 2k if each of Gy and G; contains
no triangles. To the end, we only need to show that for any nontrivial
vertex-set F' in G, if |F| < 2k — 1 then then G — F is connected.

Let Fp = FNV(Gy), and Fy = FNV(G;). Obviously, Fo N F, = 0.
Thus, either [Fy| < k—1 or |Fj| < k—1. We can, without loss of generality,
suppose that |[F1] < k — 1. Then G; — F) is connected since 5(G1) = k.
We show that any vertex ug in Go — Fy can be connected to the connected
graph G; — Fi. Let upu; be a cross-edge, where u; € V(Gy). If u; ¢ F,
then we are done. So we assume that u; € Fj. Since F is a nontrivial
vertex-set, there exists a vertex vy adjacent to up in Gy — Fy. Consider
N = Ng(uo,v). Then |N| = 2k > 2k — 1 since G contains no triangles.
Thus, there is a vertex o € N N V(Go) such that the cross-edge zoz;,
where z; € V(G}), is not incident with any vertex in F. This implies that
ug in Gp — Fp can be connected to G; — F} via the cross-edge zoz;.

Thus, we show that |S| > 2k for any nontrivial vertex-cut S in G, that
is, ks(G) > 2k if each of Gy and G, contains no triangles. The theorem
follows. 1

By Theorem 2 and Proposition 2, we obtain the following corollary
immediately.

Corollary (Chen et al [10]) G(Go,G1; M) is (k + 1)-regular super
connected if and only if eithern > k+1lorn=Fk+ 1 withk=1,2. ]

Theorem 3 Let G = G(Gy,G1; M) and k > 1. Then
(1) A(G)=A(G)=k+1ifandonlyif n=k+1;
(2) k41 < X(G) = A (G) < 2k if and only if n > k +2; and
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(3) As(G) = A\+(G) = 2k if each of Gp and G contains no triangles.

Proof (1) Clearly, n > k+1 is necessary for k > 1. Assume As(G)) =
k + 1, then there is a nontrivial edge-cut S with |S| = k + 1 such that
G — S contains no isolated vertices. Let H be a component of G — S and
let h = V(H). Then 8c(H) = S. We can easily verify that H is certainly
included in one of Gy and G;. Without loss of generality, assume that H
is included in Gy. Consider the degree-sum of vertices in H. Since G is
(k + 1)-regular, we have

hh-1)> Y du(@)= ) dg(z)-|S]
zeV(H) 2eV(H)
= hk+1)—(k+1)=(h—1)(k+1),

from which we have A > k+ 1. On the other hand, noting that dg(H) = S
and every vertex in H is matched by M with a vertex in G1, we have
|8 N E(Gy)| = |S| = h < 0, which implies H = Go, 0¢(H) =S = M, and
soh<|M|=|S|=k+1. Thus, wehaven=h=Fk+1.

Conversely, if n = k + 1 with k£ > 1, then Gy and G; are isomorphic
to K,. Clearly, the perfect matching M is a nontrivial edge-cut. Thus,
k+1=XMG) < X(G) € |M|=n=k+ 1, which yields \-(G) =k + 1.

(2) By the conclusion in (1) and Proposition 1, the assertion holds
clearly.

(3) By Proposition 2 and the conclusion in (2), we need to prove that
As(G) > 2k if each of Gp and G contains no triangles.

Assume that F is a nontrivial edge-set of G. We need to prove that if
|F| < 2k —1 then G — F is connected. Since A(Go) = MG1) =k, at least
one of Go — F and G; — F is connected. We can, without loss of generality,
suppose that Go— F' is connected. In order to prove that G—F' is connected,
we only need to show that any vertex z; in G can be connected to some
vertex in Go — F.

If the cross edge zoz; is not in F, then there is noting to do. Suppose
that zoz; € F. Since F is a nontrivial edge-set, which does not isolate
a vertex, there exists an edge z1y in G such that z,31 ¢ F. Since G
contains no triangles, then |[Ng(z1,¥1)| = 2k > 2k — 1. Thus, there exists
at least one u; € Ng(z1,%:1) such that the cross-edge uou; is not F. Thus,
z; can be connected to Gy — F via the cross-edge uou.

Thus, we show that |S| > 2k for any nontrivial edge-cut S in G, that
is, As(G) 2 2k.

The theorem follows. (]

By Theorem 3 and Proposition 1, we obtain the following corollary
immediately.

30



Corollary (Chen et al [10]) G(Go,G1; M) is (k + 1)-regular super
edge-connected if and only if n > k+ 1 for any k > 1. ]

3 Applications

Topologies of many interconnection networks can be viewed as G(Go, G1; M )
for some k-regular graphs Go and G4, such as the hypercube Q,,, the twisted
cube T'Qy, the cross cube CQ,, the Mébius cube MQ,, and the locally
twisted cube LT'Q,,. Chen et ol [10] have proved that each of these networks
is super connected and super edge-connected. Applying our results, we
immediately obtain that their super connectivity, super edge-connectivity,
restricted connectivity and restricted edge-connectivity all are 2n — 2 for
n 2 3 and, thus, are super connected and super edge-connected. The proofs
are omitted here.
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