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Abstract

Let Ky, Ck, Tk, and P, denote a complete graph on k vertices, a
cycle on k vertices, a tree on k + 1 vertices, and a path on k + 1
vertices, respectively. Let K, — H be the graph obtained from K, by
removing the edges set E(H) of the graph H (H is a subgraph of K,).
A sequence S is potentially K,, — H-graphical if it has a realization
containing a K,, — H as a subgraph. Let o(K,, — H,n) denote the
smallest degree sum such that every n-term graphical sequence S with
o(S) 2 o(Km — H,n) is potentially K,, — H-graphical. In this paper,
we determine the values of (K41 —H,n) forn > 4r+10,r > 3,7+1 >
k > 4 where H is a graph on k vertices which contains a tree on 4
vertices but not contains a cycle on 3 vertices. We also determine the
values of o(K,41 — Po,n) for n > 4r + 8,7 > 3.

Key words: graph; degree sequence; potentially K,,.; — H-graphic
sequence
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1 Introduction

The set of all non-increasing nonnegative integers sequence 7 = (d(v;),
d(vz), ..., d(vs)) is denoted by NS,. A sequence meNS, is said to be
graphic if it is the degree sequence of a simple graph G on n vertices, and
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such a graph G is called a realization of m. The set of all graphic sequences in
NS, is denoted by GS,. A graphical sequence 7 is potentially H-graphical
if there is a realization of m containing H as a subgraph, while = is forcibly
H-graphical if every realization of 7 contains H as a subgraph. If 7 has a
realization in which the r+1 vertices of largest degree induce a clique, then =
is said to be potentially A, 1-graphic. Let o(7) = d(v1)+d(v2) +...+d(vn),
and [z] denote the largest integer less than or equal to z. We denote
G + H as the graph with V(G + H) = V(G)|UV(H) and E(G + H) =
EG)UEH)U{zy : z € V(G),y € V(H)}. Let K, Ck, T, and By
denote a complete graph on k vertices, a cycle on k vertices, a tree on k+1
vertices, and a path on k + 1 vertices, respectively. Let K, — H be the
graph obtained from K, by removing the edges set E(H) of the graph H
(H is a subgraph of Ky,).

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted
ez(n, H), and is known as the Turdn number. This problem was proposed
for H = C, by Erdés [2] in 1938 and generalized by Turén [15]. In terms of
graphic sequences, the number 2ez(n, H) + 2 is the minimum even integer
[ such that every n-term graphical sequence 7 with o(7) > { is forcibly H-
graphical. Here we consider the following variant: determine the minimum
even integer ! such that every n-term graphical sequence 7 with o(w) > !
is potentially H-graphical. We denote this minimum ! by o(H,n). Erdés,
Jacobson and Lehel [4) showed that o(Ky,n) > (k—2)(2n—k+1)+2 and
conjectured that equality holds. They proved that if m does not contain
zero terms, this conjecture is true for £ = 3, n > 6. The conjecture is
confirmed in [5],(10],[11],[12] and [13].

Gould, Jacobson and Lehel [5] also proved that o(pK2,n) = (p—1)(2n—
2) + 2 for p > 2; 0(Cy,n) = 2[2372] for n > 4. Luo [14] characterized the
potentially Cj. graphic sequence for k = 3,4, 5. Lai [7] determined o(K4 —
e,n) for n > 4. Yin,Li and Mao[17] determined o(K,41 — e,n) for r > 3,
r+1<n < 2rand o(Ks — e,n) for n > 5, and Yin and Li [16] further
determined o(K,4+1 — e,n) for 7 > 2 and n > 3r? — r — 1. Moreover, Yin
and Li in [16] also gave two sufficient conditions for a sequence m¢GSy, to be
potentially Ar;-graphic and two sufficient conditions for a sequence 7e¢G S,
to be potentially K, — e-graphic. Yin [18] determined o(Ky4+1 — K3,n)
for n > 3r 4+ 5,7 > 3. Lai [8, 9] determined o(Ks — Cy4,n),0(Ks — Ps3,n)
and o(Ks — P4,n), for n > 5. In this paper, we prove the following three
theorems.

Theorem 1.1. If r > 3
(r=-1D2n-7)-2(n-7)+2.

Theorem 1.2. If r > 3
(r=-1(2n—-7)-2(n-7).

Theorem 1.3. If r > 3,7+ 1>k >4 and n > 4r + 10, then o(K,+1 —

and n > 4r + 8, then o(Kry1 — Po,n) =

and n > 4r 4 10, then o(K,4+1 — T3,n) =
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H,n) = (r—1)(2n —r) — 2(n —r), where H is a graph on k vertices which
contains a tree on 4 vertices but not contains a cycle on 3 vertices.

There are a number of graphs on k vertices which containing a tree on
4 vertices but not containing a cycle on 3 vertices (for example, the cycle
on k vertices, the tree on & vertices, and the complete 2-partite graph on k
vertices, etc ).

2 Preparations

In order to prove our main result,we need the following notations and re-

sults.
Let m = (dy,---,dn)eNSp,1 <k <n. Let

(dl - ls'”’dk—l - l)dk+l —la"':ddk-l-l - laddk+2v"':dn)v
7‘,”__ ifdlczk:
k (dl - 11'”vddk - lsddk+l)"',dlc—lrdk-l-l,""dn)v
if di < k.

Denote 7}, = (d},d5,---,d,,_;),where d] > dy > --- > d/,_, is a rearrange-
ment of the n — 1 terms of #j. Then =} is called the residual sequence
obtained by laying off dy. from .

Theorem 2.1[16) Let n > r + 1 and 7 = (d;,dp, -+, d,,)eGS,, with
dry1 2 7. Ifdi > 2r —i for i = 1,2,---,r — 1, then = is potentially
A, 4i-graphic.

Theorem 2.2[16] Let n > 2r + 2 and © = (d1,do, -+, d,)eGS, with
dry1 2 7. If doryg 2 7 — 1, then 7 is potentially A,.,;-graphic.

Theorem 2.3[16] Let » > r+ 1 and 7 = (d;,dz, - -+, d,)eGS, with
dry1 27—1. Ifdi > 2r —i fori =1,2,---,r — 1, then 7 is potentially
K, .1 — e-graphic.

Theorem 2.4[16] Let n > 2r + 2 and = (dy,d2, -+, dn)eGS, with
dr—y 2 7. If dor42 2 7 — 1, then 7 is potentially K,,; — e -graphic.

Theorem 2.5[6] Let 7 = (dy,---,dn)eNS, and 1 < k < n. Then
meGS, if and only if 7,.eGS,—;.

Theorem 2.6(3] Let 7 = (dy,--+,dn)eNS, with even o(r). Then
meGSy if and only if for any £,1 <t <n-—1,

n

t
Y di<tt-1)+ > min{t,d;}.

i=1 j=t+1

Theorem 2.7(5] If 7 = (dy,da,-*,dy) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization
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G’ of m containing H as a subgraph so that the vertices of H have the
largest degrees of .

Lemma 2.1 [18] If # = (d1,d2,*+,dn)eNS;, is potentially K, — e-
graphic, then there is a realization G of 7 containing K, — e with the
7 + 1 vertices vy, - - -, Ur41 such that dg(v;) =d; fori =1,2,---,7+1 and
€ = VrUr4l.

Lemma 2.2 [18] If 7 > 3 and n > r + 1, then o(Kr41 — K3,n) >
(r=1)2n-r)~-2(n-71)+2.

3 Proof of Main results.

Lamma 3.1 Let n > r+1 and 7 = (dy,dp,--+,d,)eGSy, with d, > 7 -1
anddey; >7r—2 Ifd; >2r—ifori=1,2,---,7 -2, then 7 is potentially
K1 — Py-graphic.

Proof. We consider the following two cases.

Case 1: dpyy 27— 1.

Subcase 1.1: d._; > r+ 1. Then 7 is potentially K4, — e-graphic by
Theorem 2.3. Hence,r is potentially K, — P»-graphic.

Subcase 1.2: dy—; =7r—-1. Thend,_y =dr=dry1 =7r-1.

If dry2 = 7 — 1, then the residual sequence =, ,, = (dj, --,d;_,)
obtained by laying off dr41 = 7 — 1 from = satisfies: (1) d} = d; — 1
for i = 1,2,---,7 =2, (2) d} 2 2(r—1)=1;--, 8,1y | = dr5 2
2(r=1)~(r—2),d;_y = dr,d(,_y)4, = d; = dry2 = 7 — 1. By Theo-
rem 2.1, .., is potentially A(,_1)+1-graphic. Therefore, 7 is potentially
Kr+l - P2‘gr3'phic by {dl - 13 : °'ad1‘-2 - lde‘)dr-i-?} = {dif nT )d:‘} and
Theorem 2.7.

If d.y2o < r — 2, then the residual sequence 7., = (dj,---,d},_,)
obtained by laying off dr4; = r — 1 from 7 satisfies: (1) d} = d; — 1
fori = 1,2,-.-,7r =2, (2) df 2 2(r—1) - 1,-~-,d{,,_1)_1 =d _o, >
2(r—1)~(r-2),d;_; =dr, d,_yy,, = dp = dr—y —1=7—-2. By Theorem
2.3, m,,; is potentially K(,_1)+1 — e-graphic. Therefore, 7 is potentially
Kr+1 _P2'gra'phic by {dl - 11 ttty dr_2— 1, dra d‘r—] - 1} = {dia Ty d:-} and
Lemma 2.1.

Subcase 1.3: dr—y =7. Thend,y;=7ro0r7—1.

If d.yy = r, then dr_y = dr = dry1 = 7. The residual sequence =,
satisfies: (1) di =d; —1fori=1,2,---,7-2,2)d} >2d1 -122(r-1) -
1,---, dzr—l)—l =d,_g2dr2-122(r-1)—(r—-2)and d,_,y,, = d. >
d.—1=r-1. By Theorem 2.1, m,,, is potentially A(_1).+1-graphic. Thus,
 is potentially K4 — Pe-graphic by {d; - 1,---,dr—2—1} C {d},---,d}.}
and Theorem 2.7.

Ifdeyy=r—1,thend, =r—1lorr.
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Ifd, =r—1, then 7], satisfies: (1) d; =d;—1fori=1,2,---,7r-1,(2)
di >di-1>2(r-1)-1,-- ,d(r_l)_l =d,_y=dro—12>2(r—-1)—(r-2)
and di,_,,, = d; = d. = 7 — 1. According to Theorem 2.1, 7., is
potentially A(,_1);1-graphic. Therefore, 7 is potentially K., — P,-graphic
by {dy—1,---,dr_1 - 1,d.} = {d}, -, d;} and Theorem 2.7.

If dr = 7, then ;. , satisfies: (1) d; =d; —1fori=1,2,---,7 —2,(2)
di2di-122(r-1)- L@y gy = d_o=dr2-122(r—-1)-
(r—2)anddj,_, ., =d; =dr—1 —1=r—1 By Theorem 2.1, m,, is
potentially A(,_1),1-graphic. Therefore, 7 is potentially K1 — P;-graphic
by {di —1,---,dr—2 —1,d,,dr—y — 1} = {d},---,d.} and Theorem 2.7.

Case 2: dry1 <7 -2, that is, dryy =7 —2.

If .y < dr_3, then 7], satisfies: (1) d; =d; —1fori=1,2,...,r -
22 d =di—122r—1)=1,d _  =d _p=dg~12
2(r—1)-[(r—1)-1] and d,_,),, = dr = dr > 7~ 1. By Theorem 2.1,
.4 is potentially A(,_141-graphic. Therefore, 7 is potentially K1 — P,-
graphic by {d - 1,---,dr—2—1,dr_1,dr} = {d},"--,d.} and Theorem 2.7.

If drmy = dr—2 > r + 2, then 7], satisfies: dj > dy — 1 > 2(r —
1) =1, dfy_yy_y =drg 2 dr2—122(r—1) = [(r—1)—1] and
d(,,_l) +1 = d. > r—1. By Theorem 2.1, m,, is potentially A¢r_1)41-
graphic. Therefore, 7 is potentially K41 — Pe-graphic by {d,—1,dr,dy —
1,--+,dp_2 — 1} = {dy,---,d.} and Theorem 2.7.

Lemma 3.2. Let n > 2r+2 and 7 = (dy,da, - - -, dp,)eGS,, with dr_3 >
7. If dary2 > 7 — 1, then 7 is potentially K, — P;-graphic.

Proof. We consider the following two cases.

Case 1: If dr—; > r. Then 7 is potentially K, —e-graphic by Theorem
2.4. Hence, w is potentially K,.,; — P,-graphic.

Case 2: dr_y <r-1,thatis,d,—y =7r—1,thend,_y =dr =dpy1 =
v+ =dpryo =7—1and 7, satisfies: (1)d; =di—1fori=1,2,---,7—2,(2)
@p1y41 = dr 2 7 —1and dy, )., =dy 2 (r—1) = 1. By Theorem
2.2, m,,, is potentially A.-graphic. Therefore, 7 is potentially K,.1 — Ps-
graphicby {d; —1,--,dr_2—1,d,,dr42} = {d}, -, d.} and Theorem 2.7.

Lemma 3.3. If r > 3 and n > r + 1, then o(Kyy1 — P2,n) > (r —
1)2n—-7)—2(n—-r) +2.

Proof. By Lemma 2.2, for r > 3and n > r + 1, 6(Kr41 — K3,n) >
(r—1)(2n—7)—2(n—r)+2. Obviously, forr >3 and n > r+1, o(Krs1 —
Pyyn) > o(Kry1— Kayn) 2 (r—1)(2n—r1) - 2(n — 1) + 2.

Lemma 34. If r >3,r+1>k>4andn > r+1, then o(Ky41 —
H,n) > (r —=1)(2n —r) — 2(n — r), for H be a graph on k vertices which
containing a tree on 4 vertices but not containing a cycle on 3 vertices.

Proof. Let
G= Kr—2 + -Rn-r+2
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Then G is a unique realization of ((n — 1)7~2, (r — 2)*~"+2) and G clearly
does not contain K., — H, where the symbol z¥ means z repeats y times
in the sequence. Thus

o(Kr41—-H,n) 2 (r—2)(n-1)+(r—-2)(n—r+2)+2 = (r-1)(2n—7)—2(n—r).

The Proof of Theorem 1.1 According to Lemma 3.3, it is enough
to verify that forr > 3 and n > 4r + 8,

o(Krs1 —Poyn)<(r-1)(2n—r)-2(n—-r)+2.
We now prove that if n > 4r + 8 and m = (d,dz, - -, dn)eGS, with
o(m)2(r-1)2n-r)=2(n-r)+2,

then 7 is potentially K 41 — P>-graphic.
Ifdrmg <7 —1, then

(r=3)n-1)+(@F-1)n-r+3)
(r-1)(n-1)-2n-1)+(-1)(n—-7+3)
(r=1)2n-r)-2(n-17)

< (r=1@2n-r)-2(n-r1)+2,

o(nm)

<

which is a contradiction. Thus d,_3 > 7.
Ifd. <7 -2, then

Z‘l-ld + ZL—T

(r = 1)(r = 2) + Yope min{r — 1,5} + SiL,
(T ~1)(r-2)+ 2350, di
r=-1(r-2)+2(n—-r+1)(r-2)
r-12n-r)—2(n—r)-2
(r=1)2n-r)-2(n—-7)+2,

o(n)

AIATIAN

which is a contradiction. Hence d > r — 1.
Ifdryy <r—3, then

Et"'l d‘ + d"‘ + Et—r+1

(T - 1)(1‘ - 2) + Ez—r mzn{r -1 d'-} + d"' + Zz—r+1 d“
(r— 1)(r—2)+mm{r—1 e} +d-+230 1 ds
(r-1)(r-2)+2d, +23 0 .1 di
rFr=1)(r-2)+2n-1)+2(n- r)(r -3)
(r-1)2n—-7r)—2(n-r1)
(r=-1@2n-7)-2(n-r)+2,

o(m)

ANINIATIAD

which is a contradiction. Thus dp4; > r — 2.
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Ifdi 2 2r—ifori=1,2,-.-,7r—2o0r dgr42 > 7—1, then 7 is potentially
K, — Pr-graphic by Lemma 3.1 or Lemma 3.2. If da, 2 < -2 and there
exists an integer 7,1 < ¢ < r — 2 such that d; < 2r — i — 1, then

o(r) < (E-Dn-1)+@r+1-i+1)2r—i-1)
+r-2)(n+1-2r-2)
= 2+4+in—-4r-2)—-(n-1)+2r-1)(2r +2)
+(r=2)(n-2r-1).

Since n > 4r + 8, it is easy to see that i? + i(n — 4r — 2), consider as a
function of i, attains its maximum value when ¢ = r — 2. Therefore,

o(r) £ r=-22+(n—-4r-2)(r-2)=(n-1)
+(2r-1)2r+2)+ (r-2)(n-2r-1)
= (r-1)2n—-r)-2(n-7)+2—-n+4r+7
< om),

which is a contradiction.
Thus, 6(Kry1 — Poyn) < (r—1)(2n—7) —2(n—17) + 2 for n > 4r + 8.
The Proof of Theorem 1.2 According to Lemma 3.4, it is enough
to verify that for » > 3 and n > 4r + 10,

(K1 —T3,n) < (r—1)2n—1) — 2(n —7).
We now prove that if n > 4r + 10 and 7 = (dy, da, - - - , dr)eGS,, with
o(r) 2 (r-1)2n—-71)-2(n—-r),

then 7 is potentially K.,; — T3-graphic.

If d._2 < r — 1, we consider the following cases.

(1)Suppose dy—2 =r—1and o(m) = (r = 3)(n— 1)+ (r —1)(n —r +3),
then 7 = ((n — 1)73, (r - 1)*~"+3). Obviously « is potentially K,,; — T3
graphic.

(2)Suppose d,—2 =r —1 and () < (r = 3)(n—1) + (r — 1)(n - r +3),
then .

or) < (r=3)n-1)+(Fr-1)(n-r+3)
(r=1)n-1)-2(n-1)+(r-1)(n—r+3)
(r—-1)@2n-r)-2(n-r1),

which is a contradiction.
(3)Suppose dr—3 < r — 1, then

o(m) < (r=38)n-1)+(r—1)(n—-r+3)
(r=D(n-1)-2nr-1)+(r—-1)(n—-r+3)
(r—1)2n-7)-2(n-1),
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which is a contradiction.
Thus, dr_2 > 7 or 7 is potentially K,; — T3 graphic.
Ifd. <1 —2, then

Yo di+ T, di

a(m)

< (r=1(r-2)+ 3 min{r-Ld}+ XL, d
= (r—1)(r-2)+2), d;

< (r=-D(r-2)+2(n—r+1)(r—-2)

= (r=-1)2n-71)-2(n—r)—2

< (r=-1)2n-7)-2(n-r1),

which is a contradiction. Hence d,. > r — 1.

If dr4y < r — 3, we consider the following cases.

(1)Suppose dr = n—1,thend; > dpy 2 -+ 2 dpy 2dr =n—1,
therefore d; = dg = -+ = d, = n — 1. Therefore d.4; > r, which is a
contradiction.

(2)Suppose dr < n — 2, then

bt + T di
(7‘ - 1)(T - 2) + E?=r mzn{r -1, d'} +dr + E?:r-i-l d;
(r=1)(r—2)+min{r—1,d.} +d- +23 0 ., d:i
(r=1)(r-2)+2d, +23 0 41 i
(r=1)(r-2)+2(n—2)+2(n—r)(r - 3)
(r=-1)2n-7)-2(n-r)-2
(r-1)2n-r)-2(n-r1),

o(r)

AN TIANIATTIA D

which is a contradiction.

Thus dpy1 27— 2.

Ifd; > 2r—ifori=1,2,-.-,7—2or dory2 > 7 —1, then 7 is potentially
Kr41—Ts graphic(r = ((n—1)""3, (r—1)"""*3)) or 7 is potentially K, —
P-graphic by Lemma 3.1 or Lemma 3.2 . Therefore, 7 is potentially K, —
Ts-graphic. If dyr+2 < 7 — 2 and there exists an integer 4, 1 < ¢ <7 —2
such that d; < 2r — i — 1, then

o) £ (E-1)n-1)+Q2r+1-i+1)(2r—i-1)
+(r=2)(n+1-2r-2)
= 2?+iln—4r-2)-(n-1)
+(2r—-1)2r+2)+ (r-2)(n—-2r—-1).

Since n > 4r + 10, it is easy to see that i2 4 i(n — 4r — 2), consider as a
function of i, attains its maximum value when ¢ = r — 2. Therefore,

o(r) € (r=22+(n-4r-2)(r-2)—(n—-1)
+(2r—-1)(2r+2)+(r—-2)(n~-2r-1)
r=-1)2n-7r)-2(n—-r)—n+4r+9
< o(m),
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which is a contradiction.

Thus, o(Kr41 — T3,n) < (r—1)(2n —7) — 2(n —r) for n > 4r + 10.

The Proof of Theorem 1.3 By Lemma 3.4,forr > 3,7+1>k >4
and n > r+1, 0(Kr41 — H,n) 2 (r — 1)(2n — 7) — 2(n — r). Obviously, for
r>3,7r+1>k>4andn > 4r+10, 0(K;41— H,n) < o(Kr+1—Ts,n). By
theorem 1.2, for r > 3,7+1 >k > 4 and n 2> 4r + 10, (K41 — T3,n) =
(r—1)(2n—-r)—~2(n—r). Then o(Kr41 —H,n) = (r-1)(2n—7) - 2(n—-r),
forr>3,74+1>k>4and n > 4r+10.
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