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Abstract

Brenti (J. Combin. Theory Ser. A 91 (2000)) considered a g-
analogue of the Eulerian polynomials by enumerating permutations
in the symmetric group Sy, with respect to the numbers of excedances
and cycles. Here we establish a connection between these g-Eulerian
polynomials and some infinite generating functions.
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1 Introduction

Let S, denote the symmetric group of all permutations of the set {1,2,...,n}.
An ezcedance in a permutation 7 := w(1)7(2) - - - 7(n) is an index ¢ such that
m(4) > 4. As usual, we will denote by exc (w) the number of excedances of
m, and by cyc (7) the number of cycles of . For example, the permuta-
tion m = 315426 € Sg has the cycle decomposition 7 = (1, 3, 5, 2)(4)(6), so
exc(m) = 2 and cyc(w) = 3. It is evident that exc(w) < n — cyc(w) for
7 € S,. The ordinary Eulerian polynomials A,(x) are defined by

Ag(z) =1, Ap(z)= E <M+ forn > 1.
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Let A(n, k) be the coefficient of z* in A, (z). The number A(n, k) is called
an Eulerian number (see, e.g., [2, Chapter. VI|). They satisfy the symmetry
relation

A(n,k)=A(n,n~k+1) for1<k<n
The historical origin of the ordinary Eulerian polynomials is the following
summation formula:

g = _An(2)
2 = ey ®

Recently, Brenti [1] considered a g-analogue of the ordinary Eulerian
polynomials defined by

Ao(z;q9) =1, An(z;q) = Z goxc(Mg¥e (™M for n > 1.
TESH
Clearly, An(z) = zAn(z;1) for n > 1. Brenti obtained [1, Proposition 7.2]

the recursion
o
Ant1(2;9) = (nz + ¢)An(z;9) +2(1 — 2) 5-An(2; ) (2)

and showed (1, Theorem 7.5] that A,(z;q) has only simple real zeros when
q is a positive rational number.

2 Results

The first few of the g-Eulerian polynomials A, (x;g) are listed below:
AO(‘T; q) = 15
Ai(ziq) = g,
Az(z;q) = q(z+q),
As(z;q) = glz® + (1+3g)z + 4%,
Ay(zq) = qlz®+ (4 +T9)z? + (1 + 49+ 6q°)z +¢°),
As(z;q9) = q[.'::4 +(11+ 15q)z>® + (11 + 30g + 25¢%)z? +

(1 + 5¢ + 10¢? + 10¢®)z + ¢*).

Looking at the above list carefully, we observe the connection between these
polynomials and some infinite generating functions, which is a generaliza-
tion of (1).
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Theorem 1. For all nonnegative integers n, we have

n q + i - 1 i _ —z_:n_ l‘
% () = e (59) @)
in Z(q)([=]].
Proof. Set Bp(z;q) = 2™ An(z1;q). From (2), it is not difficult to verify
that

o

Bo(z;q) =1, Bpyi(z;9) = (n+9)xBn(z;9)+z(1—z)=——B,(z;q) forn > 1.

0z
Let 1
Cn(z;9) = (1 — z)**9 Z (q ti- ):z:" forn > 0. 4)

20
We have

8 [ Ca(ziq) | _ Cani(zia)
*5z (1 - z)nt+e (1 - z)nta+l’
which is equivalent to
(n + q)zCn(z;q) + z(1 - z)b'_c’n(ma 7) = Cat1(z; 9)-

It follows from (4) and the Binomial Theorem (see, e.g., (3, p. 16]) that
Co(z;q) = 1. Hence C,(z;q) satisfies the same recursion and initial con-
ditions as B,(z;q), so they agree. This completes the proof of the theo-
rem. O
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