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Abstract

de Bruijn digraphs and shuffle-exchange graphs are useful
models for interconnection networks. They can be represented
as group action graphs of the wrapped butterfly graph and the
cube-connected cycles, respectively. The Kautz digraph has the
similar definitions and properties to de Bruijn digraphs. It is d-
regular and strongly d-connected, thus it is a group action graph.
In this paper, we use another representation of the Kautz digraph
and settle the open problem posed by M.-C. Heydemann in [6].
Keywords: Cayley digraph, Kautz digraph, wreath product of
groups

1 Introduction

In designing interconnection networks or large scale parallel processing
architectures, designers often require the following properties: small di-
ameter, small degree, high connectivity, simple routing algorithm, sim-
ple network analyzability, and so forth. The class of Cayley digraphs
has good properties for those requirements, and many researchers have
proposed Cayley digraphs based on various groups (1, 4, 7, 9, 10, 12, 13].
In [2], they have been interested in the relation between group action
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Table 1: Some Cayley digraphs and their associated graphs.

Cayley digraph Group action graph

Wrapped butterfly graph BF(d,n) | de Bruijn digraph B(d,n)[2]
Cube-connected cycles CCC(n) Shuffle-exchange graph SE(n)[2]
—-Open [6]- Kautz digraph K(d,n)

Figure 1: Kautz digraph K (2, 3).

graphs (GAG, for short) and Cayley digraphs, and have proved that
every connected GAG is isomorphic to some Cayley coset graph (or
Schreier coset graph). The advantage of Cayley coset graphs is the
ability to simulate large associated Cayley digraphs with small slow-
down. Some Cayley digraphs and their associated digraphs are shown
in Table 1. In [11], the Cayley digraph associated to the regular digraph
is called Cayley cover.

The d-ary n-dimensional Kautz digraph K (d, n) is the digraph with
the vertex set

V= {220.’1:1 ce+Zp_1 € Zg+1 P T #Ti41,0<i<n— 2},
where Z443 = {0,1,...,d}, and the arc set given by
{(zoz1 " Tn-1,%1 " *Tn-1Tn) i ToT1***Tn-1,%1Z2 " Tn-1Tn € V}.

The Kautz digraph K (2,3) is illustrated in Figure 1. For any integers
d,n, K(d,n) is a regular digraph of out- and in-degree d and strongly
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d-connected, thus it is a GAG and a coset digraph. M.-C. Heydemann
proposed the following problem in [6]:

Problem 1 ([6]) Give an ezplicit construction of the Cayley digraph
Cay(Gr(II),IT) associated to K(d,n) considered as GAG(V,II).

This problem has been studied in [3], [5] and [11]. In [3], they have
treated the case when the Kautz digraph is a Cayley digraph in itself.
In (5] and [11], they have treated the class of iterated line digraphs,
including the de Bruijn digraph and the Kautz digraph. They have
shown that the group generated by some regular digraph is a subgroup
of the semidirect product of groups. In [11], when d+1 is a prime power,
they have shown the explicit group and their construction using the
finite field theory. That representation is valid in the above condition,
however it seems that it is not easy to extend for any d. In [5], they
have considered another representation based on permutation groups.
Nevertheless, the target of their method is vast and it is difficult to say
that it shows the group explicitly. For example, the cardinalities of the
groups are not given. It seems difficult to know the structure of the
groups from their representation.

In this paper, for n > 2 and any d > 2, we give a permutation group
on the vertex set of the Kautz digraph K(d,n) by using another repre-
sentation of the vertex set. Second, we show the cycle decomposition
of K(d,n). In other words, we propose a view on the Kautz digraph
as a GAG. Third, we show that the permutation group generated by
our cycle decomposition is isomorphic to an explicit subgroup of the
product of four cyclic groups. This construction is simple and clear.
In addition, we construct a new class of Cayley cover of the Kautz
digraph. These results settle the problem given by Heydemann.

This paper consists of two major parts. In Section 3, one major
part, we discuss the Kautz digraph. We give the representation of
the Kautz digraph and show a cycle decomposition of that digraph as
a GAG. Section 4, the other major part, shows the group and their
action on a specified set. Section 5.2 illustrates a relation between the
Kautz digraph as a GAG in Section 3 and groups in Section 4. Section 5
gives a formal definition of the Cayley digraph associated to the Kautz
digraph based on previous three sections.

2 Preliminaries

This paper treats both groups and graphs. In Section 2.1 and Sec-
tion 2.2, we describe some group-theoretic definitions. In Section 2.3,
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we give definition of the Cayley digraph and their associated graphs.

Notations ©j and @y, are used to indicate modulo k subtraction and
addition, respectively, when there exists a possibility of misreading, but
we use notations — and + when those are correctly read.

2.1 Symmetric group, homomorphism and group
action

Let S be any nonempty set. A bijection of S into itself is called a
permutation of S. The set of all permutations of S forms a group
under the composition, called the symmetric group on S and denoted
Sym(S). A permutation group is just a subgroup of some symmetric
group.

Let I be a group and A = {61,d2,...,0;} asubset of I'. A is called
a generating set of T if every element of I can be expressed as a finite
multiplication of elements of A. Each element of the generating set is
called a generator. For the converse, given a subset A = {Jo, d1,...,0x}
of agroup I, a group Gr(A) is a minimum subgroup of I" which includes
the subset A, that is, if ¥ € Gr(A), then v - §; € Gr(A) where t =
0,1,...,k. A is said to generate I (or I is generated by A) if I’ =
Gr(A).

Let T" be a group and S a nonempty set, and suppose that for each
z € S and each 4 € T, we define an element of S denoted by z - v (in
other words, (z,7) — z -+ is a mapping of S x I into S). Then we say
that this defines an action by right of I’ on S (or I acts on S) if we
have:

1. z-e =z for all z € S where ¢ is the identity element of I'; and
2. z-(af)=(z-a)-Bforalze Sandall o, €T.

Let I, I be groups. A mapping f : ' — IV is a homomorphism of
T onto I if for all @, B €T,

f(aB) = f(2)f(B)-

Let f : ' — IV be a homomorphism, and €' be the identity element of
I'. The kernel of f is the set ker(f) = {¥ € T'|f(v) = €’}. A homomor-
phism of I onto Sym(S) is called a (permutation) representation of I’
on S.

We see that each action of I" on S gives rise to a representation of
I on S, so we may think that permutation representations and group
actions are different ways for describing the same situation.
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Proposition 1 Let I',T’ be groups. A homomorphism f: T — I is
injective if and only if ker(f) = {€} where € is the identity element of
T.

Let ' be a group and S a set. A permutation representation of T’
on S is called faithful if it is an injective homomorphism from T to
Sym(S).

2.2 Wreath product of groups

Let Z,, be the cyclic group of order m, and I any group. The wreath
product of the group I' by Z,,, denoted by I'? Z,,,, is defined as follows:
Each element of I' ! Z,, is denoted as

7 = {a; 8(0)),
where o € Zn, and B(0) = BB - - - Bm—1 € I'™. Multiplication in the
wreath product is executed in the following manner.
(@ 8(0) - {&/; 8'(0)) = {a +a'; B(0) - B'(m — ),

where o + o is taken under modulo-m addition, and

B0} B'(m — ) = (Bo - Brm—a) (B1 Br—at1) =+ (Br—1 " Braa(m-1))-

For each i, (8; - B;,_o4:) is taken under multiplication of I".

2.3 Group action graphs and Cayley digraphs

Let V be a set and II a set of permutations on V. A group action graph
(GAG, for short) GAG(V,II) has a vertex set V, and there exists an
arc (u,v) if and only if there exists a permutation 7 € II such that
w(u) =v.

Let T’ be a nontrivial finite group and A = {6y,02,...,6¢} a gen-
erating set of I'. We associate a digraph called the Cayley digraph of
I' with respect to A and denote it by Cay(T',A). The vertex set of
Cay(T', A) is the set of elements of I. For 71,7, € T, there exists an
arc (71,72) generated by §; in Cay(T', A) if and only if y2 = 16;.

3 A GAG representation of the Kautz di-
graph

In this section, we propose a GAG representation, that is, a vertex
labeling and representation of the adjacency based on the labeling, of
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the Kautz digraph. From the definition of the Kautz digraph, the
set of the difference of two consecutive letters in the vertex label is
{1,2,...,d}. We may map {1,2,...,d} = Z441\{0} onto {0,1,...,d—
1} = Z by subtracting one, that is, i € Zg441 \ {0} is mapped to
i—1 € Z4. To use this property, we give another representation of the
Kautz digraph.

Theorem 1 For the Kautz digraph K(d,n), there exists a vertez la-
beling from Zgyq % Z:'l such that a verter v = (w;vovy +-Un—2) N
V(K (d,n)) is adjacent to the vertices (w ®g41 (vo+1);v1v2 - Un-2b)
for some b € Z,.

Proof: For a,b € Zay1 where a # b, a function ¢ : Z3,, — Zg4
is defined by ¢(a,b) = (bOa+1 @) — 1. A mapping f : V(K(d,n)) —
Zas1 x 257! is defined as follows:

f(zoz1 -+ Tn—1) = (Zo; $(z0, T1)P(T1, T2) - - - $(Tn—2, Tn—1)).

First, we have to prove that f is bijective. Since |V(K(d,n))| =
[Za41 x 2571, it is sufficient to show that f is injective. Let v =
(w;vov1 -+ - Vn—2) € Zg41 X Z:"l. We assume that there exist vertices
T = ZoT1+* Tn-1,Y = Yo¥1 - Yn—1 € V(K(d,n)) such that f(z) =
f(y) = v. By the definition of f, zo = yo = w. Next, we notice the
following property on vp with the fact of previous equation,

vp = (21 ©a+1 Zo) — 1 = (1 Oa+1%0) — 1.

To make this equation valid, we must have z; = y; since 0 < z; < d
and 0 < y; < d. We apply this relation sequentially to conclude that
z = y. Hence, the mapping f is injective.

Next, we describe the adjacency of vertices with this labeling in
the Kautz digraph. Let v = wuouy -+ Un—1, ¥V = UU2' - Un—1Un €
V(K (d,n)),un € Zg+1\{tn-1}. By the definition of the Kautz digraph,
(u,v) € A(K(d,n)) and

fw) = (uo;d(uo,u1) dlu1,u2) -+ d(un—2,un-1)),
f(u) (u1; B(u1,u2) P(uz,us) - - S(un—1,un)).

uo Bd+1 (D(uo,u1) + 1) = uo Da+1 (((u1 Od41 uo) — 1) + 1) = up Sa+1
%) ©441 Uo = #1. Therefore, u; can be obtained from uo, $(uo, 1) and
a constant 1. ]

The vertex labeling given in Theorem 1 is called (1,n — 1)-labeling.
Now, we are ready to introduce a GAG representation of the Kautz
digraph using (1, n — 1)-labeling.
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(1,01) (0,00) “w(1,10)

- - -

Figure 2: Kautz digraph K(2,3) with (1,n — 1)-labeling.

Theorem 2 Let n > 2. The function set ¥ = {4, ¥1,...,%a-1} from
V(K (d,n)) onto itself is defined as follows:

(w;vov1 -+~ Un—2) - ¥ = (W Ba41 (vo + 1) ; v1ve - - vn—2 (vo By 1))

The function set ¥ is a permutation set on V(K (d,n)) and the Kautz
digraph K(d,n) can be arc-labeled so as to be a GAG(V, ¥).

Proof: By the definition, for each %, 4; is a function on V(K (d,n)).
We now show that each 1; is injective. Suppose to the contrary,
we assume that there exist vertices v = (wy;upuy+ un-2) and v =
(wo;vou) -+ - vn—2) such that ¥;(u) = ¥;(v). By the definition of 1;,
u; =v; for 1 <i<n-2 From vy ®gi = ug Dq i, up = vo. More-
over, from w; @441 (o + 1) = we g4 (vo + 1), w; = we. We can
conclude that « = v, and ; is injective for any i € {0,1,...,d — 1}.
Therefore, for each i, y; is a permutation, and ¥ is a permutation set
on V(K(d,n)). Moreover, we can conclude that K(d,n) can be arc-
labeled so as to be a GAG(V, ¥). O
In Figure 2, vertices in K(2, 3) are labeled by (1, n — 1)-labeling, solid
arcs and dashed arcs are labeled by 1y and 1, respectively.

4 Group based on the wreath product

In this section, we investigate the group and its action on the set. The
set can be considered as the vertex set of the Kautz digraph.
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Let d > 2 and n > 2 be integers. We consider the subset &4, of the
group I' = ((Zg4+1 21 Zg) 1 Z,—1) X Z3 and the subset IT of &4, defined
as follows:

Gin = { ((k; (=03 70(0)) (21:52(0)) -+ (Tn_z; Fn_2(0))),)

’k €Zn_1, i €24, Yij € Lay1

d-1 d-1 d-1
Zyo" = Zyl" == Zyn_g_t =0 (modd+ 1)} ,

t=0 t=0 t=0

where p = 0 if d is even, p = k (mod 2) if d and n are both odd, and
p € Zy otherwise.
For each i and t € Zg, #i(t) = ¥i,¢ Yi,t+1** Yird—1 ¥i,0 ¥i,1 " Yit—1-

n = {1rm = ((1; (m; 211 -+ - 1)(0; 0)(0; B) - - (o;ﬁ)) ,p) Im € zd},

where p=0ifdisevenand p=1ifdis odd, and 0 =00---0.
In this paper, we use a letter v € ®q4,, to refer to the following
element, since each element is represented in very long form;

v = ({k;{zo;F0(0)){z1;71(0)){z2;72(0)) - - (Tn-2; Fn-2(0))),p)-

It is clear that B4, is closed under the multiplication, and we have
the following lemma.

Lemma 1 The subset 84,5, forms a subgroup of ((Za+11Zq)W%n-1)XZs3.

4.1 Structure of the group &,4,

We show that II is a generating set of &4,,. To treat Cayley digraphs
and permutation groups, an important fact is to define their generating
set clearly. The following theorem shows II is a generating set of &4,,,.
This is the main factor that determines the structure of the Cayley

digraph.
Theorem 3 Gr(Il) = G4 .
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Proof: We prove Gr(II) C 84,5, and B4,n C Gr(II) to show Gr(Il) =
Bd.n.

Since II € B4, and &4, forms a group, it is easy to verify that
Gr(II) C Gq4,n.

For the converse, we prove that any element in B4, can be repre-
sented as some multiplication sequence of elements in II. However, it is
hard to represent any element in 84 by using some elements in IT di-
rectly. Therefore, we should use more lucid set for easiness to verify that
Gr(Il) 2 84,,. We will consider asubset IT" = {uq, p1, 0,21, ..., Va—-2}
which is a subset of ®4,,. We show that II' can be represented by the
multiplication of the elements of II and every element in B4, can be
represented as a multiplication of elements of IT'.

((1;(0;6)(0; 0) - -- (0;0)), p)
ﬂ_gn 1)d

Ho
- (mo - 17 ~2)°
where p =0 if d is even, p = 1 if d is odd.

* 7o,

mo= ((0;(1;0)(0;0)--- (0;0)),0)

= D pm@-D) ez
vo = ({0;(0; 100 -0d)(0;0) - - - (0;0)),0)

= wgn'l)d FORE -wgn_l)(d_m ‘mg - mET2,
v = ({0;(0;010---04)(0;0) - - - (0;0)),0)

= " mg n R MOy 2,

v - ((0;(0;00---010- - -0d)(0; 0) - - - {0; 0)), 0)
t

(n=-1)d _(n—1)t

= anD el ne | n1)(d=21) -2

PR A

viz = ({0;(0;00:--01d)(0; ) - - - (0; 0)), 0)

-1)d —1)(d-2 - -~
= a" )-1r§" X )-7r0~1r?2-1r2-1r{‘ 2,
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The element 4 € B4, can be represented as

— vo,0 Yo,1 Y0,2 ¥0,d-2 Zo
Y = YUy VT ctVgly  tH t MO
Y1,0 V1,1 V1,2 | Y1,4-2 Ty
B IS S T B T o R
2,0 2,1 Y2,2 Y2,d-2 T2
Vo v T gy By Mo
Yi,0 Vi1 Vi, 2 Vi d-2 Zi
RS SRR B e S T
Yn-2,0 Yn-2,1 Yn-2,2 Yn~2,d-2 ZTn-2 k
‘Yo g Yy Va2 BT Bt po,

with elements in IT'.
When d is odd and n is even, some elements are unable to be rep-
resented by using only IT’. Although the element

"D = ((0; (0;0)(0; 0) - -- (0 0)), 1)

can be applied to invert p. We can represent any element in &4, by
I’ together with the above fact.
Therefore, 4, C Gr(II) and &4, = Gr(II). O

4.2 The action of &,, on the set
In this section, we define an action of G4, on some set related to the

vertex set of the Kautz digraph.

Definition 1 Let v € B4, and s = (w;5(0)) € X = Zgyy x Zj7 1.
The mapping p: X x G4, — X is defined as follows:

n—-2d-1

j=0 t=0

where w+3 5 2ty -y +"ﬂ}1—l is taken under modulo d+1 and
each element of (k) + (k) = (vi + zk) (Vk41 + Zkt1) - - - (Vk—1 + Tk—1)
is taken under modulo d.

We show that the mapping defined in Definition 1 is an action of
&4, on X,
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Theorem 4 The mapping p is an action of B4, on X.
Proof: From the definition of p, for any s = (w; 7(0)) € X, we have
(w; 5(0)) - ({05 (0;0)(0; 0) - - 0, 0)), 0) = (w; ¥(0)).

Then, p satisfies the condition (1) of Section 2.1.
Let o, 8 € 84,5, be denoted as

({(a; (e0;50(0)) (e1;51(0)) - {en-2; Fn-2(0)), Pa),
({b; ( fo; Ro(0)) ( f1551(0)) -+ fa—2 ; Bn—2(0)), Pg)-

o4

B

Then, B
af = ((a+b;(eo+ fo-a;Fo(0) + ho-a(d — eo))

(€1 + fi—a;51(0) + A1—a(d — 1)) - -
<en—2 + fn—Z—a ;§"—2(0) + H"—2"a(d - en—2)>apa + Pﬁ)-

To prove that p satisfies the condition (2) of Section 2.1, we show

that s (aff) = (s-a) - B.

n—-2d-1
s-(af) = (w + Z Zt (Gjt—vs + hja t—v;)—e;)

3=0 t=0
d+1 i
(_Pa_ﬂM, #(a +b) + & + b) +f(b))
n—2d—1 n-2d-1
= (w+d Yt gat-vf"'zzt Ri-a(t-v)-e;
3=0 t=0 3=0 t=0

(P_otw, v(a+b)+€(a+b)+f(”))

n—2d-1
sra = (w+ZZt g]t—"j"'pa( +1),v(a,)+e(a))

j=0 t=0

n-2d- n—-2d-1
(s-0)-B = (w+ZZt Gitmus F D D8 Bip (uayibenss)

j=0 t=0 i=0 s=0

+pm(d; 1, Pﬁ(d2+ b, a+b)+&a+b)+ f(b)) '
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In the last equation, the summation on the index i means the sum of
all possible values of the first index of k and the indices of v and e
because those indices are taken under modulo n — 1. Therefore, if we
set i/ =i+ a (mod n — 1), the last equation can be rewritten as:

j=0 t=0 /=0 s=0

n—-2d-1 n—-2d-1
(8 . a) . ﬂ = (w + Z Z t- gj,t—w + Z Z §: h’il—a,s—(ﬂ‘l’*'e‘l)
y L2t 2@ Y 5o 4 by 1ot )+ f"(b)) .

Thus,
s-(af)=(s-a)- B,

and p is an action of &4, on X. 0

Next we prove that p is a faithful action by showing that no non-
identity element v € &4, fixes every element z € X.

Theorem 5 The action p of Ban on X is faithful.

Proof: It is easy to see that the element v in &4, which fixes (0; 0)
satisfies: g = £; = --- = Zn—2 = 0. Elements that satisfies above
condition and fixes the element (0;00---01) have k =0.

Before we go to the general proof, we should consider the special

element L .
7 = ((0; (0; 0){0; 0)(0; 0) - - - (0; 0)), 1)
in 84,, where d is odd and n is even.

©0)- (0000 - 0:0), 1) = (0+ L32:0) # @)

Thus, 7 & ker(p). This fact makes it clear that if p is not a faithful
action, then ker(p) consists of elements such that there exists at least
one nonzero entries yr,q in vy where 7 € Z,_1,9 € Z4. We assume that

there exists such an element .
Let s4_q = (0;0-- O(d q)0---0) and sq_q-1 = (0;0-- O(d q-

1)0-.-0). By the assumption, actions of 4 on s4-4 and sd_q_l in X
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are both fixed under p, that is,
S8d—q*Y = (0'00---0(d—q)0---0) -y

r—ld-1
(0+Zzt y],t"'zt Yrt—(d-q)

3=0 t=0 t=0
n-2 d-1
d+1
+ ) Dty t (+ ): 00.. -0(d—q)0--
J=r+l t=0
= S8d—q

Sd-q-1'7 = (0'00---0(d—q—1)0--~0)~

r=ld-1
(O+Zzt y],t+zt Yrt—(d~g-1)

j=0 t=0 t=0

n—-2 d-1

d+1

+ Y e ,,z+”( *1: 00...0(d—g-1)0--
j=r+1t=0

= S8d—g-1,

We consider the first term in sq_q - v and sq_q—1 - 7. In each case, if
the element v fixes both s4_4 and s4_q—1, then

Dt Une-(dma) = Dt Unt—(d—g-n =0 (mod d+1).
t=0 t=0

Since the second index of y is taken under modulo d, we can rewrite ¢ —
(d—q) and t—(d—g—1) as t+q and t+g+1, respectively. Unfolding and
arranging the left hand side member in the above congruence equation,
we have

d-1 d-1
z t Yritqg — Z b Yrttrqtl

t=0 t=0
= 0-yrqg+1- Yrg+1+2 Yrge2+ -+ (d -1)- Yrg+d-1
~(0-Yrgr1+1- Yrgr2 + -+ (d—2) *Yrg+d-1+ (d—1) - yrq)
= Yrg+ltYrg+2+-+ Yrg+d—1 + Yr,qg — d. Yr.q-

From the definition of &4 ,, 2?;01 Yrt =0 (mod d + 1) and —dy,q =
Yr,q (mod d + 1), then

Yrg+1 tYrg+2+  +Yrgtd-1+Yrg— & Yrg =Yg =0 (mod d+1).
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That is a contradiction to the hypothesis. Then no nonidentity element
in B4, fixes every elements in X under the action p, and we conclude
that p is a faithful action. O

5 The explicit construction of the Cayley
digraphs based on the Kautz digraph

5.1 The action of elements in II on the set

In this section, we investigate the action of the element 7, € II on
% = Z4y1 x 257! under the action p. This action is related to the
permutation set in Theorem 2.

Lemma 2 Under the action p, for each m € Zg the element m,, € II
acts on the set X as follows:

(w; (0)) - T = (W +vo + 1,01 V2 + - - Ung Vo + M),

where w + vp + 1 and vp + m are taken under modulo d + 1 and d,
respectively.

Proof: Let (w;(0)) € X.
Case 1: d is even

(w; 5(0)) - ({1; (m3 211+ 1) (050) -+ (650)) ,0)

d—1

(w+zt-(l+[t=vo]); v1v2v3---vn_gvo+m)
t=0

= (w+0+14+2+4+ -+ (d—1)+vo; VIV V3 Un—2 Vg + M),

where [t = ) is the Iverson’s convention, that is, if ¢ = vo, then
[t = vo] = 1, otherwise, 0.

dd-1
w+0+1+2+~-+(d—1)+vo=—(—2—)+w+vo
1)(d—2
_@+ld-2 )2( )+w+vo+1.

Since d is even, d + 1|((d + 1)(d — 2)/2) and then
w+0+142+--+(d-1)+vw=w+vo+1 (modd+1).

Then, (w; 5(0)) « *m = (w+vo + 1; v1v2+* Vn_2v0 +m).
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Case 2: d is odd
(w; 9(0)) - ({13 (m; 2111 0;0) --- (03 ) , 1)

d—-1
d+1
= (w+2t'(l+[t=vo])+(—é—); vlv2v3---v,._2vo+m).
t=0

d+1 _
w0+ 142+ (d=1)+ ;f ) 4y = @+ 1)2(d 1)

Since d is odd, 2|(d — 1) therefore d + 1|((d + 1)(d — 1)/2). Then,

+w+vo+1.

(w; T(0)) T = (w+vo+ 1; vive---vp_2v0 +m).

5.2 The group generated by K(d,n) and the Cayley
graph

In Theorem 2, we have described the GAG representation of the Kautz
digraph. In this section, we investigate the structure of the group
Gr(¥P) generated by the Kautz digraph.

Theorem 6 Let d, n > 2 be integers and ¥ a permutation set on
V(K(d,n)) defined in Theorem 2. Then, 84, = Gr(¥).

Proof: @ We can remark that the action p is a faithful action
from &4, onto Sym(X), there exists a subgroup I' of Sym(X) which
is isomorphic to B4, and {p(mo), p(m1),...,p(74—-1)} is the generating
set of I'. On the other hand, by the definition Gr(¥) is also a subgroup
of Sym(%). From Theorem 2 and Lemma 2, for each m € Z,, there is a
one-to-one correspondence between ¥, and m,,, that is, p(7m) = ¥m.
Since generating sets of I' and Gr(¥) are equal, a group I is isomorphic
to Gr(¥) and therefore &4, = Gr(¥). O

Based on the results in previous sections, we are ready to propose
a new class of Cayley digraphs.

Definition 2 Let d and n > 2 be integers. The twofold butterfly
digraph TBF(d,n) is a Cayley digraph Cay(®g,,,1I).

Proposition 2 TBF(d,n) is the Cayley cover of Kautz digraph K (d, n).
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Proposition 8 The order of TBF(d,n) is 2(n—1)(d(d+1)©@-D)(n~1)
if d is odd and n is even, and otherwise (n — 1)(d(d + 1)(@-1)(n—1),

The twofold butterfly digraph TBF(2, 3) is shown in Figure 3. Fig-
ure 5 and Figure 6 show the decomposition of TBF(2,3) with respect
to the generator mp and my, respectively. Figure 4 shows a vertex layout
in each vertex block in Figure 3,5 and 6.

It follows from Theorem 6 and Definition 2 that the twofold butterfly
digraph is the Cayley digraph associated to the Kautz digraph and we
have the following theorem.

Theorem 7 Let d and n > 2 be integers. The twofold butterfly di-
graph TBF(d,n) is the Cayley digraph associated to the Kautz digraph
K(d,n) considered as the GAG of Theorem 2.

6 Conclusion

In this paper, we have investigated the subgroup of some products of
four cyclic groups and introduced the twofold butterfly digraph. The
twofold butterfly digraph and the Kautz digraph are associated graphs.
These results settle the problem posed by M. -C. Heydemann. This
study is based on the (1,n — 1)-labeling of the Kautz digraph.

A The difference from the previous results

In [5] and [11], the 1-factorization, that is, GAG representation of Kautz
digraph K(r,k + 1) has been defined as follows:

(z,ho, ha, ... he_1)fi = ( + ho, h1, he, ... hi—1,hot), 1<i<Zr

where r+1 is a prime and (z, ko, A1, . - ., Bk—1) € Zrs1 X(Zr41\{0})¥, by
using the property that K(r,k + 1) is isomorphic to the &-line digraph
of complete symmetric digraph (without loops) K,1;. When r = 2,
GAG representation in [5] and [11] are same as this paper. They also
investigated the permutation group that is generated by K(r,k + 1).
The group is isomorphic to the group (Z,4+; % Z,)* x Z;, where symbol
x means the semidirect product of two groups. Their cardinality is
k(r(r + 1))*. Comparing with Proposition 3, it is clear that the groups
are different.

If GAG representations are the same, permutation groups that are
derived are also the same. Therefore, GAG representations are different
when r # 2.
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({0; (%; wx) (%; %)), 0)

({1; {%; #x){%; %)), 0)

(5o 000, B T
\‘
(x: (0: w4 {1; 40)),0) N
\ Z
) 6464044 K/
s
A\
NN

({%; {1; #x)(0; %)), 0)

(% (1;##) (15 %)), 0)

{{0: (% wx) (x: %#)), 0)

Figure 3: Twofold butterfly digraph TBF(2, 3).
Remark:Box-shaped vertices are replicated for visualization.
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(@ 00000 ()
GO @)
(@ ooy, 0 ()
CIENE @)
CIEENEN @)
(@ 212,00 ()
(@t 12000, 0 ()
(@m0 ()
(@ s 12)0120,0( )

Figure 4: Detail
of vertex blocks in
Fig. 3, 5 and 6.

({o: (th o

{{o: (i 0]

({0 {o: o0){o: 093).0) ({1 (o o0} {oz00)), 1) ((6k (o: wa){e: 00}, )

230 063).0) @, 2

)(1:0)),0)

((o: (2: 000z 00

({o:1:o0

({o: {0 00!

(fo: {0

({o: (1:w

({o: (1: ve)

Figure 5: mp arcs in TBF(2,3).

({i: (o 00 {o: 00}}.0) ({1: {o: 00) ez 00)), ) (a0 (o2 wod{o: 00} 0)
® ( L

Figure 6: m; arcs in TBF(2,3).

Remark:Box-shaped vertices are replicated for visualization.
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