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Abstract

In this paper we consider a random mapping, T}, of the finite
set {1,2,...,n} into itself for which the digraph representation G, is
constructed by: (1) selecting a random number, Ln, of cyclic ver-
tices, (2) constructing a uniform random forest of size n with the
selected cyclic vertices as roots, and (3) forming ‘cycles’ of trees by
applying a random permutation to the selected cyclic vertices. We
investigate kn, the size of a ‘typical’ component of Gy, and, under
the assumption that the random permutation on the cyclical vertices
is uniform, we obtain the asymptotic distribution of k. conditioned
on L, = m(n). As an application of our results, we show in Sec-
tion 3 that provided L is of order much larger than /n, then the
joint distribution of the normalized order statistics of the compo-
nent sizes of G, converges to the Poisson-Dirichlet(1) distribution as
n — oo. Other applications and generalizations are also discussed in
Section 3.

1 Introduction

In this paper we consider the distribution of the size of a ‘typical’ com-
ponent in a random mapping from the set V, = {1,2,...,n} into V;, con-
ditioned on the total number of cyclical vertices in the mapping. Before
discussing the motivation for this investigation, we introduce some nota-
tion and review some well-known results for the component structure of
the uniform random mapping.
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Throughout this paper, for n > 1, let M, denote the set of mappings
f:Vy — V,. For any f € M, we can represent f by a directed graph
G(f) on n labelled vertices such that a directed edge from vertex i to vertex
j exists in G(f) if and only if f(i) = j. We say that vertex i in G(f) is a
cyclic vertex if the m-fold composition f (m)(3) = i for some m > 1 and we
let L(f) denote the number of cyclic vertices in G(f). We also note that
since each vertex in G(f) has out-degree 1, the components of G(f) consist
of directed cycles with directed trees attached. Finally, let T, denote the
uniform random mapping of V,, into V, with distribution given by

Pr{T,, = f} = n—ln

for each f € M, and let G, = G(T;,) denote the corresponding random
directed graph which represents the random mapping T5,.

Much is known about the component structure of the random digraph
G, which represents T, (see for example the monograph by Kolchin [13],
survey by Mutafchiev [14], Aldous [1], Arratia et.al. (2], (3], Hansen [8]).
In particular, it is known that, given £,, the set of cyclic vertices of Tp,
the random mapping T}, restricted to Ly, is a uniformly distributed random
permutation on the vertices in £,. This observation motivates the follow-
ing, alternative construction of the random digraph G, as a special case of
the general random mapping model described below.

A random mapping model .

Suppose that L, is a discrete random variable such that 1 < L, < n. Also,
for 1 < m, let &,, be a random, but not necessarily uniform, permutation
of the set {1,2,...,m} such that for such that for any subsets B,C C
{1,2,...,m} with |B| = |C|, we have

Pr{6,, restricted to B is a cyclic permutation }
= Pr{6,, restricted to C is a cyclic permutation }

For any subset A C V,, such that |A] = m, we use the natural ordering of
the set A to identify the elements of A with the elements of {1,2,...,m},
and we define &4 to be the random permutation of A which is induced
by the action & via the identification of A with {1,2, .,m}. Now the
random mapping T, : V, — V; is constructed using L, and the random
permutations &,, as follows: Given L, = m, let An denote a uniform
random subset of size m from the vertices V,, (i.e. all subsets of size m
are equally likely). Given A, = A C Vq, let F(A) denote the uniform
random rooted forest on the vertices V,,, where A is the set of roots, and
the edges in the trees of F,(A) are directed such that any path from a
vertex to a root is directed towards the root. Finally, suppose that 6,4 is a
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random permutation of A (as described above) which is also independent of
the random forest F,,(A). We form the directed graph G, from the rooted
forest F,(A) by adding a directed edge fromi € A to j € A if Ga(t) = 4,
and we let T}, denote the random mapping which is represented by G,.

The construction described above gives us a class of random mapping mod-
els which are determined by the distribution chosen for L., the number of
cyclic vertices, and by the distributions of the random permutations &,.

We note that if fm has the same distribution as L,, (denoted Ln 2 L,),
where L, = L(T,) is the number of cyclic vertices in the uniform random
mapping Ty, and if, for every ACV,, 5,4 = 04, the uniform random per-

mutation of A, then Gn 4 Gn and T}, 4 Ty. On the other hand, if L, =n
(i.e. Ly is degenerate), then T}, is just the random permutation Gy.

In general, it is of interest to determine the structure of Gy, for various
choices for the distributions of L,, and of the random permutations ép,. In
particular, questions concerning the structure of G,, arise in the analysis
of cryptographic systems (e.g. DES see [16]), in applications of Pollard’s
algorithm (see [15], [18]), in simulations of shift register sequences, and in
computational number theory and random number generation. We note
that since both uniform random mappings and uniform random permuta-
tions are special cases of our general model, we can view these models as
part of a ‘continuum’ of random mapping models. Specifically, we note that
for uniform random mappings, it is known (see [11]) that L, = O(+/n), and
more precisely, the normalized variable 7E= converges in distribution to L
as n — 00, where Lisa continuous random variable with density given by
fo(z) = ze~= /2, £ > 0. So, if Ly, is of order much greater than \/n (but
not necessarily of order n) and if, for m > 1, G, is a uniform permutation,
then we obtain a model G, which is ‘sandwiched’ (in some sense) between
the uniform random mapping model and the uniform random permutation
on V;,. One goal of this paper is to investigate the component structure of
such models. X

We begin our investigation by noting that if T, is a random mapping
as described above, and if ¢ : M, — Z is a discrete functional, then the
distribution of ¢(7}) is determined by the distribution of L, and by the
conditional probabilities

Pr{¢(Tn) = k| Ln =m}. (1.1)

Hence the conditional probabilities in (1.1) are fundamental to any inves-
tigation of T}, and of the corresponding random digraph G,. We note that
sometimes it can be very easy to compute the conditional probabilities in
(1.1). For example, suppose that, for f € My, ¢(f) equals the number
of components in G(f), then the conditional distribution of ¢(T},) given
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that L, = m is the same as the distribution of the number of cycles in the
random permutation &p,. In the case where &y, = om, the uniform random
permutation of {1,2, .., m}, the distribution of the number of cycles in o, is
well-known (see Feller [7), p.258). However, for many functionals it can be
much more complicated to compute the conditional probablhtles in (1. 1)

In this paper we investigate the conditional distribution of kn = kn(T})
given L, where, for f € My, kn(f) is defined to be the size of the com-
ponent in G(f) which contains the vertex 1. Since vertex 1 is ‘arbitrary’,
we can say that ky is the size of & ‘typical’ component in Gn. We also note
that by selecting a component in G, which contains the vertex 1, we are
selecting a component using ‘size-biased’ sampling. Size-biased sampling
has been studied and used in the context of both uniform random map-
pings and uniform random permutations (see Aldous [1] and Vershik and
Schmidt [17]). In Section 2, we determine a general formula (see Fact 1)
which can be used to compute the conditional probabilities

Pr{k, =k|Ln =m}. (1.2)

In the special case where, for m 2> 1, ém = Om, the uniform random
permutation on {1,2,...,m}, but L, is arbitrary we obtain exact formulae
for the conditional probablhtles (1.2). A key observation in this case is
that, as a consequence of the construction of T;,, we have

Pr{k, = k|Ln =m} =Pr{kn = k| L, =m}. (1.3)

where k,, = k(T,,). So, in this case, it is enough to consider the conditional
distribution of k, given L,. In Section 2, we also determine the asymptotic
distribution of k, conditioned on L, = m(n) under four distinct regimes:
(i) m(n) = O(1), (ii) m(n) = o(y/n) but m(n) — oo as n — oo, (iii)
m(n) = ay/n, and (iv) /n = o(m(n)). We remark here that it is well-
known for the uniform random mapping T, that

: kn b1

Jl’ngo Pr{a < - < b} —/a 2mdu (1.4)
for any fixed 0 < a < b < 1. This result can be obtained ‘directly’ , i.e.
without using the the conditional distribution of k, given L,. However,
in case of uniform random mappings, it follows from our results for regime
(iii) described above that there is an interesting and complicated interac-
tion, concealed in the asymptotic result (1.4), between the size of a typical

component in Gy, and the number of cyclic vertices in Gp.
In Section 3 we use our results for regime (iv) described above to es-
tablish Theorem 5, which is the main result of this paper. We show that
provided v/n = o(L,) (in a sense which we make precise in the statement
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of Theorem 5) and 6,, = 0,, for m > 1, then the joint distribution of
the normalized order statistics of the component sizes of G, converges, as

n — o0, to the Poisson — Dirichlet() distribution with parameter § = 1,
which we denote by PD(1), on the simplex

= {{x,-} : Z-’Bi <1,z; 2 Tiy1 2 0 for every i > 1}.

The key point of this theorem is that we always obtain the same limiting
distribution provided only that, with high probability, the number of cyclic
vertices, L, is much larger than /n. In contrast, we note that in the
uniform case the joint distribution of the normalized order statistics for
the component sizes of G,, converges to the ’P‘D(l/2) distribution on V
as n — 0o ([1]). So Theorem 5 shows that there is a sharp qualitative
dlﬁ'erence between the component structure of G and of G,, as soon as
v = o(Ln).

Finally, throughout this paper we adopt the following abuse of notation:
Suppose that 0 < z < oo is fixed and n € Z*, then by ‘integer m = zf(n)’,
where f is a function of Z*, we mean m = |zf(n)|. Likewise, if X is an
integer-valued random variable, by ‘X = zf(n)’ we mean X = |zf(n)].

2 The size of a connected component

We begin by giving a general probability formula which holds for any ran-
dom mapping digraph G, which is constructed as described in Section 1.

Fact 1. Let I, be the length of the cycle in the connected component in G
to which the vertex 1 belongs, ky be the size of this component and let Ln
be the total number of cyclical vertices of Gn. Then, form=2,3,.
k=1,2,...,n-2 and j=max{l,m—n+k+1},... ,min{k+1,m— 1}

we have

Pr{kn=k+1,l,=j|Ln=m}=

n—-m m\ j(m—=37)pm; (k+1 k=j+1 1_k+1 n-m-k+j=2
k—3+1/\J nm n n ’

where p, ; denotes the probability that in the random permutation 6., of
m elements a given j-element set forms a cycle; and form=1,...,n

Pr{l:: =n, in=m|£n=m}=pm,m
and if j #m
Pr{l?:n=n,fn=jlf,n=m}=0.
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Proof. Assume that k # n — 1 and consider the probability
Pr{ko=k+1,ln=3, Ln=m}.

There are ("} 1) ways to choose k vertices which together with the vertex 1

will form the connected component, (k']'.‘l) ways to choose the j vertices of
the cycle in this component and finally there are (";:") ways to choose
the remaining cyclical vertices. It follows from the definition of a random
mapping model T', that all such choices are equally likely. Moreover, a given
m-element set will become a set of cyclic vertices of 7,, with the probability
Pr{L, = m}/(Z); assuming this, a given j-element subset forms a cycle
with probability pm ;.

The arcs from the remaining k+1—j vertices of the connected compo-
nent generate a forest on k + 1 vertices with j trees rooted at the vertices
of the cycle. By Cayley’s formula there are j(k + 1)¥=3+1~1 such forests.
Similarly the arcs from non-cyclic vertices outside the connected compo-
nent form a forest on n — k — 1 vertices with m — j trees rooted at the
cyclical vertices; we have (m — j)(n — k — 1)*~™~%+3=2 such forests. Hence
there are (m — j)j(k+1)F=3+1=1(n — k- 1)*~™~k+i=2 forests which satisfy
the constraints, each appearing with the probability (mn"~™"1) =1, Since
we are assuming that the forest is independent of the permutation &, of
m cyclical vertices it follows that for k # n — 1

Pr{kn(f‘n) =k+ 1; ln(Tn) = J ) zﬂ. = m}

)

J(m _ J)(k + 1)k—j(n — k- 1)n—m—k+j-2
X mnn—m-1

_ ( n=m \(m\jm=)pm; (k+1\H
T o \k-j+1/\Jj mn n

n—m—k+j-2 R
X (1 - knj) Pr{L, = m}.

In the same manner one can show the second assertion of Fact 1.
[}

We now consider the special case where, for m > 1, 6, = oy, the
uniform permutation on {1,2,..,m}. In light of (1.3), it is enough to
consider the structure of the uniform random mapping digraph G, given the
number of cyclic vertices in G,. In this case, a straightforward application
of Fact 1 in the uniform case yields the following useful Corollaries.
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Corollary 1. Let I, be the length of the cycle in the connected component
in Gy, to which the vertex 1 belongs, kn, be the size of this component and let
L,, be the total number of cyclical vertices of G,. Then, for m=2, ... ,n,
k=1,...,n=2 aend j=max{l,m-n+k+1},... , min{k+1,m—-1},
we have

Pr{kn=k+1, ln=j|L, =m}
- —_a k—j+1 n—m—k+j5-2
___(n m)m J(k+l) (1_k+1) 1)

k—j34+1) nm n n

and form=1,...,n

3=

Pr{kn=n, ly=m|L,=m} =
andif j#m
Pr{k, =n, ln=3j|La=m}=0.
Proof. Note that if 6y, is the uniform random permutation, then for
i=14,2,....,m
P = G- 1)7!’(:'7%—1')! - L
: J (j )

Hence the assertion follows directly from the Fact 1. O

Summing the probabilities given by (2.1) over j leads us immediately to
the following result.

Corollary 2. Let ky, be the size of the connected component to which the
vertez 1 belongs and Ly, be the total number of cyclical vertices of G,,. Then,
fork=0,...,n—2; m=2,...,n we have

Pr{kn =k +1|L, =m}

min{k+zl.m—l} m—jf n—m k+1 k—j+1 . k41 n—m—k+j—2
nm \k-j+1 n n

j=3*

“““{"z"i'"‘} m—k—l-}-t(n—m) (k+1)‘ (1— k+ 1)""”"‘“1

nm t n n

t=max{0,k+2-m}

where j* = max{l,m-n+k+1}, and form=1,...,n

Pr{kn=n|Ln=m}=;n1—.
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Before proceeding to prove the main results of this section we make
a few remarks. First, for the applications considered in Section 3 below,
we are interested in the case where the number of cyclic vertices in Gy is
at least O(y/n). However, for completeness, in Theorems 1 and 2 we also
consider the case where the number of cyclic vertices in Gy, is o(y/n). We
note that in this case, the size of the typical component is n — o(n), and so
in Theorems 1 and 2 the variable of interest is n — ky,, i.e. the number of
vertices not contained in the component which contains vertex 1. Theorems
1 and 2 may also be of independent interest.

Theorem 1. Suppose that m = O(1) as n — oo. Then the number of
vertices outside the typical connected component, given that L, = m, has
asymptotically the following discrete distribution:

-;—1- if £€=0

1¢ _, .
Pr{n—kn=€|Ln=m}~< ;—;e if €=1,..,m-1

1 /e¢ ™ L, .

Proof. Let us assume that m = O(1) as n — oo. From the Corollary 1 we
have 1
Pr{n-kn =0|L,. =m} =

and for £ > 0 (by Corollary 2)

Pr{in—kn,=¢

min{n—¢,m} s _ L—m+j n—£€—j
T ) (Y e
m \—-m+3j/ \n n

j=max{l,m—¢}

L,=m}=Pr{kn=n—¢|L, =m}

Therefore for £ =1,2,...,m — 1 we obtain

Pr{n—k,=¢|L, =m}

N f‘: m—j g-mtiet i £—(6—m+j) eh-mHie=t
ml (L-m+j) mé (&-m+j)!

j=m-¢ j=m-—£
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E—m+] e—e

1 m
Z C-m+j)! m. 2 J(E=m3i—) T m

J =m—{ —i+
Similarly for any bounded £ = m,m + 1, ... we have

et—m-{r-j—l =¢ 1 el —£

Pr{n -k, =¢|L, =m}
i m—j gmtie=t i £—(0—m+j) ¢f-mHie~t
ml (£—m+j)! —j_l ml (¢ —m+3)!
pe—m+j—t ™ pl-mtj-1,—¢

Z(B m+j) Z(f m+j—1)!

1 et -£ 1 el—me—t
Tm 8 m{E-my

To show that this is a proper probability distribution one can use another
discrete distribution (see [12]), namely

a+ kyk-1 .
Dk = a%—e'“'k, k=0,1,..., where a is a positive integer.

O

Theorem 2. Suppose that m = o(y/n) but m — oo as n — 00, and suppose
y is fized, 0 <y < oo. Then

n—kn, _ 11 _ 1
Pr{ m2 =y Ln—m} mz\/?W_y(l exp{ 2y})

Proof. Let us assume that m = o(y/n) but m — 0o as n - 0, j = mz,
where z is fixed, 0 < x < 1 and n—k, =€ =ym?, where 0 < y < o0 is
fixed. Then

2—m+j—(n—m)e -m+:1:m-{-’"‘Z ~_i+i
Jo-mEa-8 wfo-ma-8 F

since £ = o(n) and j = o(y/n). Therefore the approximation given by the
local de Moivre-Laplace theorem is applicable for the binomial probability

(see Feller [7])
() @68

and together with (2.2) it implies that
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1 fl1-z 1 (1—x)2}
= A — — —_— d
L=~ [55 ﬁme*P{ T e
(1-1z)? -z
Y

Taking u = T we have du = —

dz and

Lp=m —1———1—-/5%ex {-u}du
n = m2 /27y Jo P )

which immediately leads to the assertion.
O

The main application of the following result is given is a companion
paper which investigates a cutting process for random mappings (see [10]).
In that application we require error bounds for the local limit, so they are
included in the statement of the Theorem 3.

Theorem 3. Suppose thata >0,0<6<1/2,0<d<z<1-d<1 and
n is such that §%/n > o3V 1. Then

a 1 (:l: - y)zaz
V2rz(l - z)3 ./o (1=y)exp {— 2z(1 — z)

where |e(n,a,z)| < C (mi‘;?;’,,l, a)) °"p(;;/ 5) and C is a constant which does

not depend on n, «, or 4.

- % }dy(l +e(n,a,7)) (2.3)

Proof. Let m = ay/n and k + 1 = zn, then it follows from Corollary 2 and
a careful application of the usual deMoivre-Laplace local limit theorem for
the binomial distribution (see Feller [7]), that

Pr{kn=k+1|Ln=m}

T m—jf n-m\ (k+1\* 0 kt1\TEH
-3 _ k+1 k1 (2.4)
nm \k—j+1 n n

1 a 1, g (2= £)%?
-7;\/2—#:8__(1——2)_3 ;'n_l(l_;)exp{_ 22}(1—1) }(1+A(n,a,:c)),
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where |A(n, o, z)] < C (;ﬁ%’;{—&y) 71; and C is a constant which does not
depend on n, a, or §. Next, since

m 1 . 1 2 2
§ t0-bof 53] Lo-mf 525 )

4
< oy (2.5)

and, for0<d<z<1-40<1,

[a-nee{-Eo > Lan o, o)

we can obtain (2.3) from (2.4)-(2.6).
We note that one can show that

/\/m/“ y’e"P{ 2201 )2)2

(i.e. that the local limit is a the proper density function) by using the
substitution

}dydm =1

Lo (z-y)e
Vel -z)’
changing the order of integration and some “routine” calculations.
O
We note that in Theorem 3 above, the value % = a is a parameter
in the limiting conditional distribution of Enn given % Recall that as
n — 00, {7% converges in distribution to a variable L with density f.(a) =

ae=*"/2 o > 0. Tt can be checked that the integral over (0, o) of the local
limit in Theorem 3 with respect to the density fi(a) yields, in light of
(1.4), the expected result, i.e.

1 (z - y)%? 1 1
/ \/21rz(1—1:)3/(1 y)exp{ 2z(1 - )}dyda noyi-z

Finally, in Theorem 4 below, we consider the case where /2 = o(m).
In order to apply this result to prove our main result in the next section,
we have given the error bounds for the local limit in the statement of the
theorem.
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Theorem 4. Suppose that /i = o(m), a is fivred, 0 < a < §, and let fiz
z,0<a<z<l1-a<]l. Then, asn— oo,

Lna =m} = %<l+s(n,m,m)) )

—m)V/
where |e(n,m, z)| < 51%"1—2:—‘

Proof. First, we suppose that n—m — coasn — co. Wealsofix0 < a < %
and suppose that k+1 =nz, where z is fixed, 0 <a <z <1-a < 1. Let
A(j) = j —mz and let §(n,m,a) = yam(n—m)'/%. Then by Corollary 2,
we have

Pr{ﬁcﬁ =z
n

Prikn=k+1|La=m}=8+ S2 + S3 = 2.7
min{k+1,m}
L{1a@)igstn.m;a)} (n - m)xm-j(l — gyn-m-ents

e n xn —j

J=3

in{k+1, .
_mE™ Lpapigsnmay BG) (n=m £ (1 — g)r-m-ants

= n(l - z) m \zn—j

in{k+1,m} .

L 1(a@)pstmma) M =3 (=M an_j; _ in-m-ont;
n(l - z) m \zZn-—j

i=3*

where j* = max{l,m —n+k +1}.
We consider the three sums in (2.7). Let X be a Binomial(n—m, z) variable
and let Y = (X — (n — m)z)//(n — m)z(1 — z). Then we have

™ sG> smma) (1= m
I>é(n,m,a - Tn—j n—m—zn+j
Sy HemRemdl (TTT )i g
J=j*
< 1 Pri Y| > é(n,m, a) < 1 (\/n—m)
n(l - z) V(n—-m)z(l - z) n am

where j* = max{1,m — n + k + 1} and the last inequality follows from
Chebyshev’s inequality. Next, observe that if |A(j)| < d(n,m,a), then

lAu) < \/E(n\/—_m)‘/“
-— m b

and it follows that

L VA m) 1 [ m)e
< s <2 (M)
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Finally, it is clear that §; < % A lower bound for the sum S is given by

n—-m

! . )(z)'u — z)n¢

min{n—m,(n—m)z+6(n,m,a)}
5 2 (

¢=max{0,(n—m)z—8(n,m,a)}

_ 1 (n,m,a) 1(, /n-m
= nPr{'Y"\/m m)az:(l—ac)}2 (1 am )

where the random variable Y is as defined above. So it follows from (2.7)
and the calculations above that for k+1 = zn, where0 <a <z < l1-a < 1,
n —m — 0o, we have

Pr{kn=k+1|L,=m} = % (1+¢e(n,m,z)) (2.8)
where |e(n, m, z)| < ma.x{g'%'l-ﬂ:— ﬁ

Finally, we consider the case when n — m = i = O(1) and, as previously,
fix0<a<iandk+1=2zn, where0<a<z<1l—a<1. Then

Pr{ky, =k +1|L, = m}

_ ’§:1 m-—jf n-m k+1)k_j+1(1_k+l n-m—k+j-2
—j=k+1—i nm \k-j+1 n n

=im—mz+mx—zn+t<i)(x)‘(l_x)i_,_l

= nm t

1 1 < —iz+t(fi), it _ 1
“atrin X m (t)”” (A-e) =g (relmma)

where, in this case, |e(n,m,z)| < . This together with (2.8) gives the

desired result.
0

3 Applications and discussion

In this section we prove our main result, Theorem 5. We also discuss some
related applications of our results and suggest some directions for the future
work. We begin by considering a random mapping digraph G, where, for
m 2 1, &m = om, the uniform random permutation on {1,2,...,m}. If we
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consider the component structure of G, as a ‘function’ of the number of
cyclic vertices, L., then, in some sense, /7 is a threshold for the number
of cyclic vertices. Specifically, if there exists m(n) = o(y/n) such that
Pr{L, < m(n)} = 1 as n — oo, then it follows from Theorems 1 and 2

that for any constant C > 0 we have
i. 2
b 1 2ot

>]l—-———"" 31 asn—o00.
n n

In other words, with high probability, G, consists of one large component
of order n and the remaining components are of order at most (m(n))2. If
Ly is of order /n (as in the case of the uniform random mapping) then

the conditional distribution of § is parameterised by the value of é% and

the asymptotic distribution of En‘l may depend on the distribution of Ln
in a complicated way. Finally, if L, is of order greater than /n then
the conditional distribution of Enn given L, is asymptotically uniform on
[0,1] and is ‘independent’ of the exact distribution of Ln. We exploit this
‘independence’ of Enn and L,, to prove the our main result which completely
characterises of the asymptotic joint distribution of the order statistics of
the normalised component sizes of G, in this case:

Theorem 5. Suppose that Ly, f,z, ... 15 a sequence of discrete random vari-
ables such that for eachn > 1,1 < L, < n. Also, suppose“that there exists
m(n) such that /n = o(m(n)) and such that a(n) = Pr{L, < m(n)} =0
as n — oo. Finally, suppose that, for m > 1, 6 = Om, a uniform permu-
tation on {1,2,...,m}. Then the joint distribution of the order statistics of
the normalised component sizes of Gy, converges to the Poisson-Dirichlet(1)
distribution on the simplez

V= {{x,} : in <1,z; 2 Ti41 2> 0 for every i 2> 1}

as n — Q.

To describe the main steps in the proof, we need to introduce some notation
and state a sufficient condition for convergence to the Poisson-Dirichlet(1)

distribution on V. . X
First, given Gy, let )Cftl) denote the component in G, which contains

vertex labelled 1. If l@&l) # G, , then let KIS?) denote the component in
Gn \ Id,l) which contains the smallest vertex; otherwise, set 155;2) = . For
i> 2, we define K iteratively: If G, \ (I“CSLI) u..u Id,._l)) # 0, then let
K denote the component in G, \(13:5.” U..ukY _l)) which contains the
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smallest vertex; otherwise, set 1&,‘:” =0@. Fori > 1, let l?:,(f) = Iﬁsf )| and
define the sequence (2,(,1), 2,(.2), ...} by

£ e , Q)
e - O — - — ...

n n— k& n—k®M —BD - kD
where éf,i) =0 if n— ,;’(11) - 125;2) - = IEf.i'I) =0, For i > 1, we also

define JS:" to be the size of the i** largest component in én. Finally, for
the uniform random mapping digraph Gy, the definitions of K¢ ), kS ), z,(.z'),
and d) are analogous to the definitions given above.

Now it is well-known (see, for example, Hansen [9] and references therein)

that to show that the joint distribution of the normalized order statistics,
) . - .
g:—, 1;:—, ...) , converges to the PD(1) distribution on V, it is sufficient

to show that foreacht >1and 0<a; <b; <1, i=1,2,...,¢t, we have

t
lim Pr{a,-<2,(j)sb,~ :15i5t}=H(b,-—a,»). (3.1)

n—oo 4
i=1

The proof of (3.1) is by induction on ¢ and we give a sketch of this proof
below.
Sketch of proof of Theorem 5. First, suppose that t = 1 and let 7, =
min(a1,1 — b;). Then we have

B
P r{a1 < o < bl}

7(1) . X

= Z Pr{a; < L < by|Ln =m}Pr{L, = m} + a(ay,b1,n) (3.2)
m2m(n) n

where 0 < a(a;,b1,n) < a(n). Now it follows from (1.3) and Theorem 4

that
P . \
Z Pr{a; < - <b lL,. =m}Pr{L, =m}

m2m(n)

m .
= ¥ Pracs E:T < by |Ln = m}Pr{Ln = m}

m2m(n)
= Z (M%rfln_] +&(a1, b, n, m(n))) Pl‘{im =m}

m2m(n)
= (M) Pr{f,m > m('n)} + Z (a1, by, n, m)Pr{ﬁﬂ = m}

m2m(n)

(3.3)
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where, for all sufficiently large n and m > m(n),

(n — m(n))1/4

le(a1,b1,m, m)l < \/m

Since Pr{L, > m(n)} — 1 and Q‘%LLIC — 0 as n — oo, the result for
T1m(n)

t = 1 follows from (3.2) and (3.3).
Next, we sketch the induction step by considering the proof of the case
t = 2 given that the result holds for t = 1. First, as above, it is enough to

consider
L,= m}

for m > m(n). Now fori > 1, let ¢ denote the number of cyclic vertices in

the component k§ (where ) =0if P = ). The key to the induction
is the observation (which follows from the definition of G, using uniform

random permutations) that if k) = zn for some a; < z < by then

KD £2
Pr alSTSbl,azsmez

- vn

) =L kD) =2n, L, = m}

(2)
Pr{azﬁ i <b
n—zn
k(l)
=Pr a2s—nﬂ$b2
n—zn

Lp—gn=m~- l} . (3.4)

Now it can be shown (by carefully considering (2.1)) that given kD = zn
and L, = m > m(n), we have m — 4 > il—'zmm(n) with (uniformly) high
probability. Standard arguments using Theorem 4 and (3.4) yield

kS
Pr{as < m < by

k(l)
a; < —:—l— <byLy=mp — (b2 —a2)

S é(alybl,aQ) b?an’ m(n)) (35)

for m > m(n), where &(a1,b1,az, b2,n,m(n)) — 0 as n — oco. The result
for t = 2 now follows from (3.5), and the result for ¢t = 1. The general
induction argument is similar to the argument sketched above, but more

cumbersome to write down.
O

Another application of our results is given in a companion paper (Hansen
and Jaworski [10]) which considers a cutting process for a uniform random
mapping. In [10] we consider the component structure of a uniform random
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mapping that has been altered by randomly cutting and deleting non-cyclic
edges (and vertices) in G,. The structure of the resulting random directed
graph depends on both the (random) number of edges and vertices that
have been deleted from G, and on the initial number of cyclic vertices in
Gp. The resulting ‘trimmed’ random mapping model is a random structure
which is also (in some sense) sandwiched between a uniform random map-
ping and a uniform random permutation. Specifically, if no edges are cut,
we have a uniform random mapping, whereas if all the trees are trimmed
down to their roots, we have a random permutation on the root vertices.
Recall that the joint distribution of the normalized order statistics of the
component sizes in G, converges to the PD(1/2) distribution as n — oo
(see [1]), whereas the joint distribution of the normalized order statistics of
the cycle lengths in the uniform random permutation oy, converges to the
PD(1) distribution as m — oo (see [17]). Given these results, one might
suppose that if m(n) edges are cut, where m(n) — oo as n — oo, then
the joint distribution of the normalized order statistics of the component
sizes of the resulting ‘trimmed’ random mapping converges to the PD(8)
distribution for some 1/2 < # < 1 (where the value of # may depend on
how m(n) goes to infinity). In fact, we show in [10] that there is no smooth
transition from the PD(1/2) distribution to the PD(1) distribution as the
number of edges cut in Gy, increases relative to n. More precisely, we show
that there is a ‘phase transition’ when m(n) = 8y/n, where 8 > 0 is a fixed
parameter, and in this case we show that the limiting distribution cannot
be PD(8).

In light of Theorem 5 and our results for ‘trimmed’ random mappings,
it would be of interest to determine whether there is some L, (of order
v/n) such that the joint distribution of the normalized order statistics of the
component sizes of G, (constructed using uniform permutations) converges
to the PD(6) for some 1/2 < 8 < 1. In another direction, we mention that
functional central limit theorems have been obtained for the number of
cycles in a uniform random permutation (see [5]) and for the number of
components in G, (see [8]). It is likely that a functional central limit
theorem also holds for the number of components C’m and we expect that
the normalization in the functional central limit theorem will depend on
the distribution of L,,.

Finally, we note that the results in this paper have been obtained under
the assumption that the permutations used to construct G, are uniformly
distributed. If we consider Fact 1 above, we see that when &, is a uniform
random permutation we can compute the values of p,, ; exactly to obtain
Corollary 2. One may ask how far we can perturb the product (7)ipm,;
from 1 and still obtain the same asymptotic results. In another direction,
it would be interesting to use permutations 62, to construct G,,, where a9,
is a random permutation on {1,2,...,m} with cycle structure given by the
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Ewens sampling formula (see [4], p.60) with parameter § > 0. We note
that the case @ = 1 corresponds to the uniform random permutation on
{1,2,...,m}. So it would be interesting to investigate how the structure of
G, varies as the parameter § varies and to determine the corresponding
threshold for the number of cyclic vertices in this case as well.
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