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Abstract

The Wiener index of a graph G is defined as W(G) =
Y WEV(C dg(u,v), where dg(u,v) is the distance between u
and v in & and the sum goes over all the pairs of vertices. In
this paper, we investigate the Wiener index of unicyclic graphs
with given girth and characterize the extremal graphs with the
minimal and maximal Wiener index.
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1 Introduction

In 1947, Harold Wiener introduced the first chemical index, now
called the Wiener index, and published a series of papers to show
that there are excellent correlations between the Wiener index of the
molecular graph of an organic compound and a variety of physical
and chemical indices. The Wiener index of a graph G, defined as [9]:

W(G) = z da(u,v),

u,v€V(G)
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where dg(u, v) is the distance between u and v in G and the sum goes
over all the pairs of vertices. An important direction is to determine
the graphs with maximal, or minimal Wiener index in a given class
of graphs. Up to now, many researchers have investigate the Wiener
index ([3]-4], [6]-(14]).

Next we introduce some graph notations. Let G be a connected
graph with vertex set V(G) and edge set E(G). For two distinct
vertices z and y in V(G), the distance between x and y is the number
of edges in a shortest path joining z and y. The distance of a vertex
z € V(G), denoted by D¢(z), is the sum of distance between x and
all other vertices of G. Let G’ be the subgraph of G, Dg(z,G’)
denotes the sum of distances between z and all other vertices of G'.
Let E' C E, we use G — E' to denote the graph obtained from G
by deleting the edges in E’. If e = uv € E(G), we write G — uv
instead of G — {e}. Let C, and P, denote the cycle and path with
n vertices, respectively. By L, x, we denote the graph obtained from
Ci and P,_g+1 by identifying a vertex of Ci with one endvertex of
P,_k+1. We denote by H,  the graph obtained from Cy by adding
n—k pendant vertices to a vertex of Cx. For other notations in graph
theory, we can refer to [2].

A unicyclic graph is a connected graph which has equal vertex
number and edge number. Let Uy, x be the set of unicyclic graphs
of order n > 3 with girth k£ > 3. For Up i € Uny, if k = n, then
Uni 2 Cy; if k=n—1, then Upx = Lpp-1. Soin the following, we
assume that 3 < k < n—2. In this paper, we study the Wiener index
of unicyclic graphs with given girth and characterize the extremal
graphs. In fact, we get the following results.

Theorem 1.1 Let Uy i € Un i (3 < k < n—2) be a unicyclic graph
with girth k.

If k is even, then % +(n— k)(%3 +n—1) £ W(Upi) < -"8—3 +
(n—k)(22tnks3k=l _ K5y The left equality holds if and only if Up s
H,k, and the right equality holds if and only if Upk & Lnk;

If k is odd, then E5% + (n — k)(B2 +n = 1) < W(Uns) <
-’ﬁs"—k+(n—k)(1‘m63k'—l—%— %) The left equality holds if and only
if Uk & Hpx, and the right equality holds if and only if Up = Ly .
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Corollary 1.2 Let U be a unicyclic graph of order n > 4. Then
n?—n< W) < %(n3 —Tn+12).

The left equality holds if and only if U = H, 3, and the right equality
holds if and only if U = Ly, 3.

2 Lemmas and Results

Lemma 2.1 Let Gy be a connected graph of order ng > 1 and u €
V(Go). Let T be a tree of order ny > 1 and v € V(T), Np(v) =
{v1,v2,-++,v;}. Let Gy be the graph obtained from Gy and T by
adding edge wv, Ga = Gy —vv1 —vva—- - - —VVs+uvy +uve+ - « - + UV,
Then

W(Gy) > W(Gs).

Proof. By definition of Wiener index, we have W(G;) =

Em,er(Go) dg, (z,y) + EmeV(Go),er(T—v) dg, (z,y) +
Lo yeV(T—v) 961 (%, Y) + Loev (o) 461 (2, V) + Lrev(r-v) 46, (T, ).
It is easy to see that

Z dG] (.’Z?, y) = Z dG2 (.’B, y)a

z,y€V(Go) z,y€V(Go)
Z de,(z,y) = Z (de,(z,y) + 1),
z€V(Go),yeV (T—-v) z€V(Go),yeV(T')
Z dg, (z,y) = Z dg,(z,y),
z,yeV(T-v) z,u€V(T")
z dg,(z,v) = Z dg, (z,v),
2€V(Go) z€V(Go)
Z dg,(z,v) = Z (dg, (z,v) — 1),
2V (T—v) zeV(T")

where T/ = G5 — Gg — v is the subgraph of Gs.
So we have
W(G1) — W(G2)
= > do;(z,9) + D, de(z,v)

2€V(Go),yeV(T—v) zeV(T-v)
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- Z ng(x:y)_ Z dGz(m$v)

z€V(Go)weV(T") zeV(T)
= Z dG'l (z’y) - Z dGz (a:,y)
z€V(Go),yeV(T~v) 2€V(Go),yeV(T")
+ z dg, (z,v) — Z dg, (.’B, 'u))
zeV(T-v) zeV(T")

= no(ny —1)-1+(n1 —1)-(-1)
= (no—1)(n1-1)
> 0.

This implies the result. l

Lemma 2.2 /8] Let Gy be a connected graph and uy,uz € V(Go).
Let G be the graph obtained from Gy by attaching ky, ko pendant edges
to uy,up, respectively. Let G; be the graph obtained by attaching
ki + ko pendant edges to u; (i = 1,2). Then W(G1) < W(G), or
W(Gs2) < W(G).

Lemma 2.3 [7] Let G be a connected graph and v € V(G). Suppose
Gj m be the graphs obtained by attaching two paths P = vv; -+ v5,Q =
VU - - - U Of lengths s,m (s > m > 1) to G at v. Then W(G} ) <

W(G;+1,m—1)'
By Lemma 2.3, we have the following lemma.

Lemma 2.4 Let Gg be a connected graph and u € V(Gp). Assume
that Gy is the graph obtained from Go by attaching a tree T' of order
ny to u and Gy is the graph obtained from Gg by attaching a path
P,, by its endvertez at u. Then W(G;) < W(Gz).

Lemma 2.5 [1] Let uv € E(G) be a cut edge in G, and let G, and
G2 be two components of G—uv withny = |V(G1)| and ng = |V(G2)|.
Suppose that u € V(Gy) and v € V(G2), then

W(G) = W(G1) + W(G2) + n1Dg (v, G2) + n2Dg(u, G1) + ning.

Lemma 2.6 Let Gy be a unicyclic graph of order ng > 1 and ug,vo €
V(Go) be two distinct vertices in Go. Py = wjug---us and P =
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v1v2 - - vy are two paths of order s and t, respectively. Let G be
the graph obtained from Gy, P, and P, by adding edges uquy, vov;.
Suppose that G = G — upuy +vpuy and G = G — vovy +usvy. Then
either W(G) < W(G,) or W(G) < W(Gs) holds.

Proof. Let G',G” be the component containing ug and vy of G —
uouy, G —vpvy, respectively. For the cut edges uou;,vovy € E(G), by
Lemma 2.5, we have

W(G) = W(GO)+W(PS)+W(.Pt)+(n0+t)DG(u1, P;)+sDg(up, G')+
TlODG(’Ul,Pt) + tDg(vo, Go) + s(no + t) +ng - t.

For cut edges vov;,upu) € E(G), we have

W(G) = W(Go)+W (Ps)+W (P)+(no+s) Dg(v1, P;)+tDg(vo, G")+
noDg(u1, P;) + sDg(uo, Go) + t(no + 8) +ng - s.

Similarly, by Lemma 2.5, we can get

W(G1) = W(Go)+W (P,)+W (P,)+(n+t)Dg, (v1, Ps)+sDg, (v, G')+
noDg, (v1, B) + tDg, (vo, Go) + s(no + t) + no - £,

W(Gs) = W(Go) + W(Fs) + W(FR,) + (no + 8)Dg,(v1,P:) +
tDg,(us,G") + noDg, (u1, Ps) + sDg, (uo, Go) + t(ng + s) + ng - 5.

It is not difficult to find that

Dg(uo,G') = Dg(uo,Go) + Dg(ug, By),

DGl(vt’G,) = DGI(Ut)GO)-'-DGl(vt,-Pt)
t—1

= Dg(vo, Go) + not + Zi,

i=1
DG(vO’ G”) = -DG('UO’ GO) + DG('UO: F),
DG2 (usv G") = DGz(usa GO) + DGz (uS) Ps)

s—1

= Dg(uo, Go) + ngs + Z 2.

=1

So we have
W(G) - W(Gy) = S(Dc(uo, Go) + Dg(uo, P.) — Dg(vo, Go) —

not — 3421 i),
W(G) — W(Gs) = t(Dg(vo,Go) + De(vo, Ps) — De(uo, Go) —

nos — £iz4).
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If W(G) — W(G1) > 0, then

W(G) - W(Ga)
s—1
= t(Dg(v0, Go) + De(v0, Ps) — Do(uo, Go) = mos — i)
i=1
t—1 s—1
< t(Dc(uo,Pc) not — Y%+ Dg(vo, Ps) — nos — 22)
i=1 i=1
t—1 s—1
= t(Da(uo, ) + Da(vo, Po) — no(t +8) — (Y i+ 1))
=1 =1
= t(DG (vo, Pe) +tD + Dg(uo, Ps) + 8D — no(t + 3)
-1 s—-1
—(Z i+ E 2))
=1 i=1
t ] t—1 s—1
= (T i+ Y it (s +OD—nolt+9) - (L i+, 1)
i=1 i=1 i=1 i=1

= t(t+s)(1+ D —ng),

where D is the distance between uo and v in Gp.
Since D < M{—l, hence

W(G) - W(G»)

-1
< tt+8)(1+ "5 — o)
= t(t+s)1 7o

< 0

So we complete the proof. ll

Now we can present the proof of Theorem 1.1.
Proof. (Theorem 1.1) By Lemmas 2.1, 2.2, we can get the left
inequalities. By Lemmas 2.3, 2.4 and 2.6, we can get the right in-
equalities. The computation of W (H, ) ,W(Cx) and W(Ly k) can
be found in [5].

3 . .
k if k is even;

WGy ’{ —(ﬁ—ll if k is odd.

k)
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+(n— k)(k +n-1), if k is even;
W(Hpi) ={ 8, ;
(B { ME-D | (n— k) (Bl +n—1), if ks odd.

W (Ln ) = ;" (n— "’)(‘—ﬂ'lc'm z'f k is even;
™ el 4 (n k)(n_"ﬂt_'ﬂ-%_l K —1)if kis odd.

|
Proof. (Corollary 1.2) If k is odd, from the proof of Theorem 1.1,
we have

k3 9k

1
—m2 L (k2 _ Ak — A Wit
W(Hpi)=n +4(k 4k — 5)n 5 + T

W(Hn,s) = n2 — 2n.
So we have

W(Hp i) — W(Hpg3)

1, L
= 4(k —4k+3)n—§+—

8
1,4 k2 9k
> (k2 —dk+3)k— — + —
> 4(k 4k + 3) gt3
- %k(k2—8k+15)
> 0,

since k2 —4k +3>0, k2 — 8k + 15> 0if £ > 3 and k is odd.
Slmlla.rly, if k is even, we can get W(Hy, ;) > W(H, 4). Note that
W(Hp4) = n? —n — 4, it is easy to see that W (Hp,a) > W(Hp,3) for
n 2 4. So we have the left inequality.
As above, if k is odd, from the proof of Theorem 1.1, we have

Tk

__2 -2 3 2
W(Lng) = [n+( k? + 3k )n+4k - 38+ 7],

W(Lns) = %(n3 —Tn+12).
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So we get

W(Ln3) — W(Lnx)

_ _1. 9 3 _5 3 s Tk

= (-2 3)n —24k +2k 51 2
7k

> = 2 _ __3 2_ -

> (k 2k — 3k - o K+ 5 L 51 T2

= — (k3

= 24(k 25k + 48)

> 0,

the last inequality holds since k2 —-2k—-3>0, k% — 25k +48 > 0 if
k > 3 and k is odd.

Similarly, if k is even, we can get W (Ly x) < W(Lpng4). Note that
W(Ln4) = §(n3—13n+36), it is easy to see that W(Ln4) < W(Ln,3)
for n > 4. So we get the right inequality. Il
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