Divisor orientations of powers of paths and powers of cycles
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Abstract.

In this paper, we prove that for any positive integers k,n with k > 2,
the graph P¥ is a divisor graph if and only if n < 2k + 2, where P¥ is the
kt* power of the path P,. For powers of cycles we show that C¥ is a divisor
graph when n < 2k + 2, but is not a divisor graph when n > 2k + [g] +3,
where C* is the k** power of the cycle C,. Moreover, for odd n with
2k +2 < n < 2k+ |£| + 3, we show that the graph C¥ is not a divisor

graph.
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1 Introduction

A graph G is a divisor graph if there is a bijection f : V(G) — S, for
some finite set S of positive integers such that uv € E(G) if and only if
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ged(f(u), f(v)) = min{f(v), f(v)}, that is either f(u) divides f(v) or f(v)
divides f(u). The function f is called a divisor labeling of G.

The length g(n) of a longest path in the divisor graph whose divisor la-
beling has range {1,2,...,n} was studied in [6], (8], and [9]. The concept of
divisor graph involving finite nonempty sets of integers rather than positive
integers was introduced in [10]. It is shown in [10] that odd cycles of length
greater than 3 are not divisor graphs, while even cycles and caterpillars
are. Indeed, not only caterpillars, but also all bipartite graphs are divisor
graphs as shown in [5). Divisor graphs do not contain induced odd cycles
of length greater than 3, but they may contain triangles, for example the
complete graphs are divisor graphs, see [5].

Quite different view points of visualizing divisor graphs were introduced
in [5] through providing two characterizations of divisor graphs, one in
terms of strongly convex digraphs and the other in terms of extreme ver-
tices. The latter one is stated in the next section, for it will be frequently
used in this paper. The present paper will investigate which powers of
paths and cycles are divisor graphs. A complete characterization is ob-
tained for powers of paths, while for powers of cycles, there are still for
each integer k > 8 few cases not settled yet, namely C¥ when 7 is even and
2% +2 < n < 2k+ | £] +3, where C¥ is the k** power of the cycle Cy, they
are likely to be not divisor graphs.

For undefined notions and terminology, the reader is referred to [2] and

[7].

2 Preliminaries

The following proposition was proved in [5].

Proposition 1. Every induced subgraph of a divisor graph is a divisor
graph.
If a component of a disconnected graph G is not a divisor graph, then

G is not a divisor graph. But if all components of G are divisor graphs,
then G is a divisor graph, as explained in the next proposition.

Proposition 2. A graph G is a divisor graph if and only if each component
of G is a divisor graph.

Proof. Let G1,Ga,...,G, be the components of G, and let f; be a divisor
labeling of G; for ¢ = 1,2,...,r. Let p1,ps,...,pr be distinct primes none
of which appears in any of the labelings f; for i = 1,2,...,7. Now define f
on V(G) as follows: for i = 1,2,...,7, if £ € V(Gi), then f(z) = p;fi(z).
Clearly f is a divisor labeling of G, and hence G is a divisor graph. The
converse follows by Proposition 1. O
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In a digraph D, a transmitter is a vertex having indegree 0, a receiver
is a vertex having outdegree 0, while a vertex v is a transitive vertez if it
has both positive outdegree and positive indegree such that (u,w) € E(D)
whenever (u,v) and (v, w) € E(D). We will call an orientation D of a graph
G in which every vertex is a transmitter, a receiver, or a transitive vertex,
a divisor orientation of G. The previous two propositions can be directly
deduced from the following characterization of divisor graphs given in [5].

Theorem 1. A graph G is a divisor graph if and only if G has a divisor
orientation.

A vertex of a digraph D is an eztreme vertez if it is a transmitter with
positive outdegree, a receiver with positive indegree , or a transitive vertex,
see [3]. Therefore, a nontrivial connected graph G is a divisor graph if and
only if G has an orientation in which every vertex is an extreme vertex.
Nontrivial connected divisor graphs where characterized as the graphs of
order n > 2 whose upper orientable hull number equals n, see [4].

If D is an orientation of a graph G, then every transmitter (receiver)
in D is a receiver (transmitter) in the converse of D, and every transitive
vertex in D is also transitive in the converse of D. Thus we have the

following result.

Theorem 2. If D is a divisor orientation of a graph G, then the converse
of D is also e divisor orientation of G.

3 Powers of paths

In this section, we characterize which powers of paths are divisor graphs.
We start by showing that P? is not a divisor graph.

Theorem 3. Let Py be the path 12...7. Then each of the graphs P?, P?—12,
—{12,67}, P? + 17, (P? — 12) + 17, and (P} — {12,67}) + 17 is not a
dzmsor graph.

Proof. Let G be one of the graphs P?, P} — 12, P? — {12,67}, P? + 17,
(P? —12) +17, or (P? — {12,67}) + 17. Assume to the contrary that G is
a divisor graph. Then, by Theorem 1, G has a divisor orientation D. In
view of Theorem 2, suppose that (4,5) € E(D). Then, since 25,47 ¢ E(G),
we must have (4,2),(7,5) € E(D). Then we get (3,5),(4,6) € E(D),
because 73,62 ¢ E(G). But also 25,15,36 ¢ E(G), which implies that
(3,2),(3,1),(4,3) € E(D). Now since (4,3),(3,1) € E(D) but (4,1) ¢
E(D), this leads to a contradiction.

The following theorem determines precisely when a power of a path is
a divisor graph.
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Theorem 4. For any integer k > 2, the graph P¥ is a divisor graph if and
only if n <2k +2.

Proof. Let P, be the path 12...n.

Case 1. n>2k+2.

Then {1,2,3,k + 2,k + 3,k + 4,2k + 3} induces in P¥ a graph which
is isomorphic to P?. Thus, by Proposition 1 and Theorem 3, Pk is not a
divisor graph.

Case 2. n=2k+2.

Let D be the orientation of P¥ with E(D) = AU BUC, where

A={(G,7):1<i<k,i<j<k+1},

B={(,j): k+2<i<2k+1,i<j<2%+2},
and

C={(ji):k+2<j<2k+1,j-k<igk+1}.

Now we will show that D is a divisor orientation of P¥. Clearly, 1,k + 2
are transmitters, while k + 1, 2k + 2 are receivers. So, let ¢ € V(D) —
{1,k+1,k+2,2k+2} and let aib be a directed path in D. Distinguish two
subcases.

Case 2.1: 1<i<k+1.

Then b € {i +1,...,k + 1} and either a € {1,...,i—1} ora € {k+
2,...,k +i}. Thus either ab € A C E(D) or ab € C C E(D), respectively.
Therefore 7 is a transitive vertex in D.

Case 2.2: k+2<i<2k+2.

Then a € {k+2,....,i — 1} and either b € {i — k,..,k+ 1} or b €
{s +1,...,2k + 2}. Thus either ab € C C E(D) or ab € B C E(D),
respectively. Therefore 4 is a transitive vertex in D.

Thus D is a divisor orientation of P¥. Hence P¥ is a divisor graph.

Case 3. n<2k+2.

Then P¥ is isomorphic to an induced subgraph of PJ; ,,, and hence by
Proposition 1 and Case 2 above, P¥ is a divisor graph. ]

Note that the divisor orientation of PJ.,, given in the proof of the
previous theorem can be generated from the divisor labeling f of P§, .,
defined by:

£6) = 2i-138 | 1<i<k+1
UEL 2D k4 2<i<2%+2

where Py is the path 12...(2k + 2).

A subgraph H of a graph G is isometric if dy(u,v) = dg(u,v) for
all u,v € V(H), see [1]. For any integer k > 2, if G is a graph with
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diam(G) = d > 2k + 2, then there exist vertices zg,z1, -+ ,z4—_1 and z4
such that d(zo,z4) = d and the path P : z9z;---z4 is a shortest zg-zq
path. Since P is a shortest path in G, it is isometric, and hence every
subpath of P is also isometric in G. In particular, since d > 2k + 2, the
path zgx; - Tor4e is an isometric path of order 2k + 3 in G. Thus G
contains an isometric subgraph which is isomorphic to Pory3. Therefore
the graph G* contains an induced subgraph that is isomorphic to Pfeis
which is not a divisor graph. Thus we have the following result.

Corollary 1. For any integer k > 2, if G is a graph of diameter d > 2k+2,
then G* is not a divisor graph. »

4 Powers of cycles

In this section, we investigate which powers of cycles are divisor graphs.
In [10], it was shown that any odd cycle of length greater than 3 is not a
divisor graph. This fact will be used in the proof of some of the following
results.

We start by considering n modulo 2k.

Lemma 1. For any integer k > 2, if n > 4k and n =i (mod 2k), for
some i € {1,2,...,k}, then C¥ is not a divisor graph.

Proof. Let Cy, be the cycle 12...n1. Then the cycle C: 1(1+k)(1+2k)...(1+
tk)1, where ¢ = 2%, is an induced cycle of length ¢ + 1 in C¥. Clearly, ¢ is
even, so C is an odd cycle. Since n > 4k, we have n —i > 4k —i > 4k - k,
thus ¢ = 22 > 3. Hence, C has length greater than 3. Therefore C¥ is not
a divisor graph. O

Lemma 2. For any integer k > 2, ifn > 2k and n =i (mod 2k), for some
ie{k+1,k+2,..,2k}, then C* is not a divisor graph.

Proof. Let C, be the cycle 12...n1, and let ¢t = % Then the vertex
1+ (¢ + 1)k is adjacent to 1 in C¥, because
de, (14 (t+1)k,1) = de,(1+(E+1k,n)+1
(tk+i)—(1+tk+k)+1
i—k
2k—k
k.
Therefore the cycle C:  1(1+k)(2+k)(2+2k)(1+3k)(1+4k)...(1+(¢+1)k)1

is an induced cycle of length ¢ +3 in C¥, note that 1+3k < nand ifn < 4k,
then £t + 1 = 3 and hence C has length 5. But ¢ is even, so C is an odd

(VAN
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cycle. Finally, since n > 2k, we have n — 1 > 2k — ¢ > 2k — 2k = 0, thus
t = 22t > 0. Therefore, Ck contains the induced odd cycle C of length
greater than 3, hence C¥ is not a divisor graph. ]

Combining the previous two lemmas, we obtain the next corollary.

Corollary 2. For any integer k > 2, ifn > 3k+1, then Ck is not a divisor
graph.

Proof. By Lemma 1 and Lemma 2, C¥ is not a divisor graph for each
n > 4k. Again by Lemma 2, C¥ is not a divisor graph for each n €

{2k + (k+1),2k+ (k+2), ..., 2k + (2k)} = {3k + 1, ..., 4k}, hence the result
follows immediately. a

To improve the result of the previous corollary, we turn to consider n
modulo k£ + 1.

Lemma 3. For any integer k> 2, ifn>2(k+1) andn=1 (mod k+1),
for somei€ {|&]+1,|%] +2,..,k}, then C¥ is not a divisor graph.

Proof. Let Cn, be the cycle 12..n1, and let ¢ = £. Then the vertex
1+ t(k + 1) is not adjacent to (k +1) — (k — i), because
do,(1+tk+1),(k+1)—(k—-1i) = de,(1+t(k+1),n)+1
+dc, (1, (k +1) - (k —1))
= ((I-1)+1+1
= 2
> k.
Then the cycle C: 1(1(k+1) = (k—12))(1+1(k+1))(2(k+1) = (k—1))(1 +
2(k+1))...(t(k+1)— (k—1))(1 +t(k+1))1 is an induced cycle of length 2¢+1

in Ck. Sincen > 2(k+1), wehaven—i>2k+2-i>2k+2-k=k+2,

thus t = -Lﬁ > 7’:—}% > 1. Hence, C has length greater than 3. Therefore

C¥k is not a divisor graph. O

Using the previous lemma, we obtain the following improvement of
Corollary 2.

Theorem 5. For any integer k > 2, if n > 2k + | £] +3, then CX isnot o
divisor graph.
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Proof. By Corollary 2, the statement is true for n > 3k+1. Now by Lemma
3, the statement is true for n € {2(k+ 1)+ |§],2(k+1) + | £] +2,...,2(k +
1)+ k} = {2k + | 5] + 3,2k + |£] +4,..., 3k + 1}, hence the result follows
immediately. O

It is worth mentioning that the result of Theorem 5 can be shown, in
view of Theorem 3, by producing an induced subgraph H of C¥ which is
isomorphic to one of the two graphs P2, PZ +17. Take H namely to be the
subgraph of C¥ induced by {1,§+1,§+2,k+2,n—k,n—§,n—§+1} ifn
is even and by {1, %+2, %+3,k+2,n—k,n— %,n— "—;1--1-1} ifnis
odd, where in both cases C, is the cycle 12...n1. This proof is shorter, but
it does not include the fact that C¥, where n > 2k + |_§ ] + 3, contains an
induced odd cycle of length greater than 3, which is shown in the proofs of
Lemmas 1,2, and 3 above. The following theorem assures that 2k + | £] +3
is the minimum value of n for which C¥ contains an induced odd cycle of
length greater than 3.

Theorem 6. For any integer k > 2, the graph C* contains an induced odd
cycle of length greater than 3 if and only if n > 2k + [§J + 3.

Proof. If n > 2k + | %] + 3, then, by the proofs of Lemmas 1, 2, and 3, the
graph C¥ contains an induced odd cycle of length greater than 3. Suppose
n < 2k+ |%] +3, and let C,, be the cycle 12...n1. Assume to the contrary
that C’,’f contains an induced odd cycle C: laibjagbs...a:b,1, for some t > 2.
Then b; > k+2, and hence b > 2k+3. Then, since 3k+4 > 2Is:+|_-2'E |+3>n,
we must have t = 2. But dg, (b2,n) < (2k + [£] +3) -~ (2k+3) = %],
thus dc, (b2,1) = dc, (b2,n) +1 < | £]. Then, since a;b2 ¢ E(C¥), we have
a1 > | %] +2. But also ajaz ¢ E(Ck), which implies that ap > &) +k+3.
Then dc,, (a2,1) = dg, (a2, n) +1 < (2k+ 5] +3)— (| %] +k+3)+1 = k+1,
which means that la; € E(C¥), a contradiction. O

Although for n < 2k+| %] +3, the graph C¥ does not contain an induced
odd cycle of length greater than 3, C¥ need not be a divisor graph as we
will see in the sequel.

Now we consider cases of n for which C¥ is a divisor graph.
Theorem 7. For any integer k > 2, if n < 2k + 2, then C,’f is a divisor
graph.

Proof. For n < 2k + 2, the graph C¥ is a complete graph and hence is a
divisor graph. Suppose n = 2k + 2. Then C¥ is isomorphic to the graph
(k+ 1)Kz, s0 let V(CF) = {1,1,2,2,....,k+ 1,k + 1} where iz ¢ E(C) for
i € {1,2,...,k + 1}. Define the orientation D of C¥ as follows: E(D) =
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{ij i< jyu{g:i<jtu{iy:i<jlufij:i<j} Clearly, the
vertices 1,1 are transmitters, while the vertices k + 1,k + 1 are receivers.
Let ve V(Ck) - {1,T,k+1,k+1}.Sayv=1i,forsome 1 < i< k+1
(the case v = 1 is similar). Let aib be a directed path in D. Then a = 4,
or i, for some 1 < 4; < 4, and b = iy or 7y, for some 1 < 42 < k+ 1.
Thus ab € E(D), hence v is a transitive vertex. Therefore D is a divisor
orientation of C¥. 0

Next, we will investigate when CF is a divisor graph for some cases of
n between 2k + 2 and 2k + [§J + 3. We start by the following result.

Theorem 8. Let C be an odd cycle in a graph G such that for each vertex
v € V(C), the two neighbors of v in C are not adjacent in G. Then G is
not a divisor graph.

Proof. Let C be the cycle 12...(2k+1)1. Assume to the contrary that G is
a divisor graph. Let D be a divisor orientation of G. In view of Theorem
2, we can suppose that (1,2) € E(D). Since 13 ¢ E(G), we must have
(3,2) € E(D), and hence 2 is a receiver in the corresponding orientation
D¢ of C. By the same argument, we have 4,6, ...,2k are receivers and
3,5,..., 2k + 1 are transmitters in D¢, a contradiction since (2k +1,1) and
(1,2) € E(D) but (2k + 1,2) ¢ E(D).

We use the previous theorem to show that for any odd integer n with
n > 2k + 2, the graph C¥ is not a divisor graph.

Theorem 9. For any integer k > 2, if n is an odd integer with n > 2k +2,
then C¥ is not a divisor graph.

Proof. Since n is odd, the element a = [-’%J +1 has an odd order in the cyclic
group Z,. But 3a = 3|%] + 3 < 2k + 3 < n, which implies that |a] > 3,
where |a| denotes the order of @ in Z,. But n > 2k +3 and a > £, which
implies that for each 1 < i < |a| — 1, the two vertices ia and (i+2)a are not
adjacent (note that for j = 1,2, ..., ]a|+1, the numbers ja are taken modulo
n). Thus the cycle C: (a)(2a)...(Ja| a)(a) is an odd cycle in Ck such that
the two neighbors of any vertex of C are not adjacent in C%. Therefore, by
the previous theorem, C¥ is not a divisor graph. 0

By Theorems 7, 5 and 9, we obtain the following characterizations for
the cases when k = 2, 3.

Corollary 3. C2 is a divisor graph if and only if n < 6.

Corollary 4. C2 is a divisor graph if and only if n < 8.
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For each value of k € {4, 5,6, 7} there is exactly one missing case for n to
obtain a complete characterization of all divisor graphs C%. We investigate
these cases in the following lemma. Note that for each k > 8, there are
more than one missing case.

Lemma 4. Let k € {4,5,6,7}. Then C§,., is not a divisor graph.

Proof. Let Cak44 be the cycle 12...(2k + 4)1. Assume to the contrary that
C¥.4 is a divisor graph. By Theorems 1 and 2, let (1,2) € E(D), for some
divisor orientation D of C%,,,. Since 1(k + 2) ¢ E(C,_’,‘,c +4)» We must have
(k+2,2) € E(D). But also (k + 2)(2k + 4) ¢ E(Ck,,,), which implies
that (2k +4,2) € E(D). Since (2k + 4)(k + 1), (k + 5)2 ¢ E(Ck,,,), we
get (k+1,2),(2k + 4,k + 5) € E(D). Now since (k + 1,2) € E(D) but
(k+1)2k+2) ¢ E(02k+4) we must have (2k + 2,2) € E(D). Hence
(k-1,2) € E(D), because (2k+2)(k—1) ¢ E(C%,,,)- Thus, since (k+3)2 ¢
E(C¥,,4), we have (k— 1,k + 3) € E(D). Now we distinguish two cases:

Case 1. k € {4,5}.

Since (k — 1,k + 3) € E(D) but (k — 1)(k + 5) ¢ E(Ck,,), we get
(k+ 5,k + 3) € E(D), a contradiction since we now have (2k + 4,k +
5),(k + 5,k + 3) € E(D) but (2k + 4,k + 3) ¢ E(D).

Case 2. k € {6,7}.

Since (k—1,k+3) € E(D) but (k—1)(2k) ¢ E(C%,,,), we get (2k,k+
3) € E(D). Then, since 2(k + 3) ¢ E(Ck.,,), we have (2k,2) € E(D).
Thus, since (2k)(k — 3) ¢ E(C¥, ), we must have (k — 3,2) € E(D). But
(k+3)2 ¢ E(Ck,.,), which implies that (k — 3,k + 3) € E(D). Then,
since (k — 3)(k + 5) ¢ E(Ck,.,), we have (k + 5,k + 3) € E(D). Now we
have (2k + 4,k + 5), (k + 5,k + 3) € E(D) but (2k + 4,k + 3) ¢ E(D), a
contradiction. O

For k € {4,5,6, 7}, the graph C¥ is (by Theorem 7) a divisor gra.ph when
n < 2k+2, and is (by Theorem 5) not a divisor graph when n > 2k+| £]+3.
By Theorem 9 and Lemma 4, the graph C¥ is not a divisor graph when
2k +2 <n<2k+|%]+3. So we have the followmg result.

Corollary 5. Let k € {4,5,6,7}. Then C¥ is a divisor graph if and only
ifn<2k+2.

For an integer k£ > 8, the case when n is even and 2k +3 < n <
2k + 5] + 3 is not yet settled. It is shown in Lemma 4 that Cf,,C},,CS;,
and Cfs are not divisor graphs, we conjecture this would be the case also
when k > 8.
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