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1 Introduction

Let Z and R denote the ring of the integers and the field of real
numbers, respectively. For a field F, we put F* = F\ {0}. Fix A € R
and B € R*, and let £(4, B) consist of all those second-order recurrent

sequences wy, = wn(a, b; A, B) of complex numbers satisfying the recursion:
wo=a, w1 =b, Wny2=Awn4 —Bw, forn=0+1,%2,---. (1)

For sequences in £(A, B), the corresponding characteristic equation is 22 —
Az + B = 0, whose roots (A + v/A? — 4B)/2 are denoted by o and 8. If
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A€eR and A = A2 - 4B > 0, then we have

_A- sg(AWVA and
- 2

A+ sg(AVA
B= —

where sg(A) = 1if A > 0, and sg(A) = -1 if A < 0. It is well known
that(see [1] [3])
(b af)a™ + (aa — b)ﬁ"
a-f
We shall denote by u, = wn(0,1; 4, B) and v, = wy(2, A; A, B) the
sequences defined for the Lucas sequences, where A € R and B € R*. If
A =1 and B = -1, then those F,, = u, and L, = v, are called Fibonacci

forn € Z.

numbers and Lucas numbers, respectively.

In [2] H. Feng and Z. Zhang defined the sequences Wy, = wn(0, ; A, B),
Un = wn(0,1; A, B) and Vi, = wm(2, 4; A, B), denoted by oi(n, k) the
summation of all products of choosing ¢ elements fromn+k -7+ 1,7+
k—i+2,...,n+ 2k — 1 but not containing any two consecutive elements,

ie.,
i
oi(n, k) = ZH(n +k—i+7),
t=1

where the summation is taken over all i-tuples with positive integer coor-
dinates 7;,j2,...,Ji suchthat 1 < ji < joa < -+- < 5 £ k+i—-1and
lir — js| 2 2 for 1 < 7 # s < 4. They obtained the following summation

(bU )k—l
2 W Wy W, = F=DI(V2 - By

ay+az+--+ax=n

k-1
Y (=2B™V VAT n = k4 Dgeamioi(n =k + 1,k = 1) Winayy, (2)
i=1
where (n)x = n(n+1)(n+2)---(n+k~-1).
In this paper we obtain the following theorems.
Theorem 1.1 Let ag,ay,--- ,a;r be non-negative integers, and k be
positive integer,
-1

5 e EE (1)

ag+ay+---+ar=n i=0 j=0
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( n+k—i—2j ) ( n+k—i—j )An_i_zj(_B)jak-i-l—i(b_aA)i’

k J
(3)
Theorem 1.2 Let ag,ay,- - - ,ax be non-negative integers, and k, m
be positive integers,
k1 [254)
k+1
i o =32 3 (417

ao+ay+-+ar=n =0 j=0 ¢

k—i—94 k—i—37 oy ) ) )
| ( R ) ( HA )v&""’(—B'")Jak“-*(wm—avm)'.

J

(4)

2 Proofs of Theorems 1.1 and 1.2

Lemma 2.1 Let A and B be two real numbers with B # 0, u,, (4, B) =
wn(0,1; A, B) and w, (A, B) = wy(a, b; A, B), we have

> t
n _ ———
nz=%un(A’B)t - 1—At+Bt2’ (5)
and o
n_ a+(b—aA)t
2 un(A B = T ©)
Proof
[ =) a® —ﬂ"
2(A,B}t" = "
R ey
- 1 (i antn — f:ﬂntn)
a—ﬂ n=0 n=0

1 1 1
- a—ﬁ(g—-at_l—ﬁt)

(1-at)(1-ft)
1- At+ B2’
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iwn(A,B)tn - E (b—aB)a™ + (aa — b)ﬁ"

n=0 n—O a- ‘B
b- +aa—b’ 1 )
(B l—at a-p 1-pt
_ a+ aA)t
I—At-l-Bt2

Lemma 2.2 Let A and B be two real numbers with B # 0, u,(A, B) =
'wn(o’ 1; Aa B)v

[n-—l

=Tl n—1-1 n—-1-2i/_ pyi
un(4,B)= 3 (7T ) 4rH=B) (7)

i=0
Proof
__t
1— At + Bt?
o0
("] t(At — Be?)"

n=0

(2% .
= f (n—.l—z )An—l—2i(_B)i‘

i=0 t

un(4,B) = [t"]

where [t"] f(t) denotes the coefficient of t* in the expansion of function £(t).
Proof of Theorem 1.1 We define

wn(Az, B) = wn(a,b; Az, B), un(Az, B) = w,(0,1; Az, B),

and

G(z,t) = iwn(Az,B)t", F(z,t) = iun(Am, B)t*-1.

n=0 n=0
By Lemma 2.1 we obtain

a+ (b— aAx)t 1

Gt =T+ B2’ F@t)=1—Zns8e

8% F(z,

Let 5k ) denote the k—th partial derivation of F(z,t) for z, and
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(k)(Az B) denote the k—th partial derivation of u,(Az, B). Then we get

OF (z,t) _ At _ e (1) n
oz~ (—Ast+BEE ; Uni1(Az, B,

62F(a:, t) _ 2!(At)2 (2) n+l
Oz2 ~ (1 — Azt + Bt2)3 Tgun“(Az, Byt™,

akF(a:, t) k'(At)k (k) ntk—1
8z T (1-— Azt + Btk ,g Une (AT BYETE

by Lemma 2.2, we have

(2] . ®
u(Az,B) = { 3 ( nolo )(Ax)"“'l‘z"(—B)"}

=0

2% . .
n—1-14 n—1-2i—k%k
= k!

. An=1-2i(_ B)ign—1-2i-k
Thus,

0
Z Z: Wao (Az, B)ws, (Az, B) - - - w,, (Az, B)t"
n=0ao+a1+---+ar=n
oo
= () wn(Az, B)tn)k+!

n=0

[a + (b — aAz)t]F+?
(T- Azt + B
- k+1
[a' + (b aA(E)t] (k) (Aa:, B)tn+k

= kI ARk Untkt+1
= kmk > ( ) a* 174 (b — aAz)' ' Y ull), | (Ax, B)",
1=0 n=0

Compare the coefficients of t* on both sides, we have

> way(Az, B)w,, (Az, B) -+ we, (Az, B)

ag+ay+:-+ap=n
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k+1
1 k+1 i ,
= klAF [z ( ; ) A (B aA“’)'"E;,?-kH—i(A-Ts B)]

i=0 L4

k+1
= k_'lﬁ.z ( kel )ak“-‘(b-an)‘k!
: i=0 i
{25 . , .
k—i— —i-2 o o
) Z ('ﬂ'l' i t—7 ) ( n+k kz J )An+k—z—2_1(_B)_7xn—z—2y.
j=0

(8)
Theorem 1.1 follows by taking =z = 1 in (8). This completes the proof
of Theorem 1.1.
Proof of Theorem 1.2 The following identity is well known (see[3])
that

Wmn = UmWm(n-1) — Bmwm(n—2)°

Let w* = wmyn, We have
n
wy = UnWh_y — B™w;_,.

Now, we defined

oo
R(z,t) = ) w}(vmz, B™)t",

n=0

s0 Theorem 1.2 follows from Theorem 1.1.

3 Corollaries of Theorems 1.1 and 1.2

In the case u, = wy(0,1; A, B), vn = wn(2,4;4,B), F = wa(0,1;
1,-1) and L, = wn(2,1;1,-1), (3) turns out to be
Corollary 3.1 Let ag, a1, - ,ax be non-negative integers, and k be

E uao“’a; ct et Ugy =

ap+ai+:-+ar=n

positive integer,

[u—-k-—ll

> ( L ) ( T )A"'Z"'"“(—B)f, ©
i=0
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and

k+1[25] k ke
Z VaoVa, *** Vg —ZZ( +1)(n+ kz 2J)

ag+ar+tar=n i=0 j=0
k—i—4 i .
) ( n+ . -7 ) (_1)1+]2k+1-1A‘n—2]BJ‘ (10)

Remark 3.2 The result of Y.Yan (4] is essentially our (9) in the

special case A=1and B =1.
Corollary 3.3 Let ag,a1, - ,ax be non-negative integers, and k be

positive integer,

z LaoLax : "Lak =

ag+ay+--+ag=n

k+11%5%) . o .
i f ( k-l.-l ) ( n+k—1-2j ) < n+k-'-z—.7 ) (_1)52;:.4.5_1.
par e i k J
(11)
In the case {wmn} = {umn}, {Wmn} = {Vmn}, {Wmn} = {Fimn} and

{wmn} = {Lmn}, (4) becomes
Corollary 3.4 Let ag,a1,:-- ,ar be non-negative integers, and k,m

be positive integers,

E UmaoUma, * * * Umay =
ao+ai+--+ar=n

(2=4=1) - —ie
Z ( n—-2i-1 ) ( n 1 1 )L;_m_k—l(-Bm)iUans (12)

i=0 k 4
and
k+1 25
k+1
Z VUmaoVma; ** *VUmay = Z Z ( )

ap+ay+--+ar=n i=0 j=0

A"t k—i-2j ntk—i—j (_1)i+j2k—i+lvn—2ijJ'_ (13)
k j m

Corollary 3.5 Let ag,a1,-- - ,ax be non-negative integers, and k, m

be positive integers,

Y FrooFma - Frna, =

ag+eay-t--tap=n
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[n-k l] . .
z n-2i—1 n—-i-1 (—1)(m+Dipn—2i—k=1pk+1
=0 k ¢ " "

and

k+1 (254
Z LimeoLima, ** - Lma, = Z Z ( k+1 )

aotar1+-+ag=n i=0 j=0

k
Example 3.6 Let m = 2,3, (14) becomes

Z FogoFag, + -+ Fag, =

ao+ai+-+ar=n

( n+k—i—2j ) ( nt+k—i—j )(_1)i+j+mj2k—i+lL"‘21'.
j m

EIFN 91\ [ n-i-1 S
Z . (_1)13n—2t—k-1,
i=0 k t

Z F3aoF3m"'F3nk=

ao+ay+-tar=n

[n-k—l] 2 1 . 1
Z’ ( n—2— ) ( n—1t-— )22n—4i—k—1'
=0 k ¢

Example 3.7 Let m = 2,3, (15) becomes

k+1 (25
Z LoaoL2a, -+ Laa, = ZZ (k+1)

ap+a14-tar=n =0 J-—O

( n+k—-1-2j ) ( n+k—i—3 )(_1)i+j2k+l—£3n—2j’
: J

and

k

and

k+1127%
> i35 (1)

ag+61+:tar=n i=0 j=0

( n+k—1i—2j ) ( nt+k—i—j )(_1)i22n+k+l—i—4j.
k J
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ABSTRACT

Let P(G, ) be the chromatic polynomial of a graph G. A graph G is
chromatically unique if for any graph H, P(H,\) = P(G, }) implies H is
isomorphic to G. In this paper, we study the chromaticity of Turdn graphs
with deleted edges that induce a matching or a star. As a by-product, we
obtain new families of chromatically unique graphs.
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1 Introduction

All graphs considered in this paper are finite and simple. For a graph G, we
denote by P(G; A) (or P(G)), the chromatic polynomial of G. Two graphs
G and H are said to be chromatically equivalent (simply x-equivalent),
denoted G ~ H if P(G) = P(H). A graph G is said to be chromatically
unique (simply x-unique), if H ~ G implies that H = G. A family G of
graphs is said to be chromatically-closed (simply x-closed) if for any graph
G € G, P(H) = P(G) implies that H € G. Many families of x-unique
graphs are known (see [4, 5]).

For a graph G, let e(G), v(G), t(G) and x(G) respectively be the number
of vertices, edges, triangles and chromatic number of G. By G, we denote

lCorrt.'.s;mm:llm; author. E-mail: geeclau@yahoo.com
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the complement of G. Let O,, be an edgeless graph with n vertices. Also
let Q(G) and K(G) respectively be the number of induced subgraphs C;,
and complete subgraphs K; in G. Suppose S is a set of s edges of G.
Denote by G — S the graph obtained from G by deleting all edges in S,
and by (S) the graph induced by S. Fort >2and 1<p; <p2 <--- < py,
let K(p1,p2,--.,p:) be a complete t-partite graph with partition sets V;
such that |Vi| = p; for i = 1,2,...,¢t. The Turén graph, denoted T =
K(t, x p,t2 x (p+ 1)) is the unique complete t-partite graph having ¢; > 1
partite sets of size p and t, partite sets of size p+1 (where t; +t2 =1¢). It
is shown in [2] that Turdn graphs are x-unique. In this paper, we study the
chromaticity of Turan graph with deleted edges that induced a matching
or a star. As a by-product, we obtain new families of x-unique graphs.

2 Preliminary results and notations

Let K~*(p1,p2, . . .,p:) be the family {K(p1,p2,...,p¢) — S| S C E(G) and
|S| = s}. For py > s+ 1, we denote by K;"jK(l’a)(pl,pg, ...,p¢) the graph
in K=%(p1,pz,. . -, pt) where the s edges in S induced a K (1, s) with center
in V; and all the end-vertices in V}, and by K| ;’K’ (p1,p2, .- -,pt) the graph
in K~*(p1, p2, - - -, pt) Where the s edges in S induced a matching with end-
vertices in V; and V;. For convenience, we let 77° = K~*(t; xp, t2 X (p+1)),
T = K 0 (4 xp, t2 x (p+1)) and T 2K = K 353(t1 x py 2 X
(p+1)).

For a graph G and a positive integer k, a partition {A,, Az,..., A} of
V(G) is called a k-independent partition in G if each A; is a non-empty
independent set of G. Let a(G, k) denote the number of k-independent
partitions in G. If G is of order n, then P(G,)) = Y p_; ®(G,k)( M)k
where (A\)g = A(A—=1)---(A—k+1) (see [8]). Therefore, (G, k) = a(H, k)
foreachk=1,2,...,if G~ H

For a graph G with n vertices, the polynomial 0(G,z) = ¥ ¢, a(G, k)z*
is called the o-polynomial of G (see [1]), and the polynomial (G, z) =
S r_, &(G, k)z* is called the adjoint polynomial of G (see [6]). Clearly, the
conditions P(G,\) = P(H,)), o(G,z) = o(H,z) and h(G,z) = h(H,z)
are equivalent for any graphs G and H.

For disjoint graphs G and H, G + H denotes the disjoint union of G and
H; GV H denotes the graph whose vertex-set is V(G) U V(H) and whose
edge-set is {zy|z € V(G) and y € V(H)}U E(G) U E(H). Throughout this
paper, all the t-partite graphs G under consideration are 2-connected with
x(G) = t. For terms used but not defined here we refer to [9].
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Lemma 2.1. (Koh and Teo [4]) Let G and H be two graphs with H ~
G, then v(G) = v(H), e(G) = e(H), t(G) = t(H) and x(G) = x(H).
Moreover, a(G, k) = a(H, k) for each k =1,2,..., and

-Q(G) + 2K(G) = -Q(H) + 2K (H).
Note that if x(G) = 3, then G ~ H implies that Q(G) = Q(H).

Lemma 2.2. (Brenti [1]) Let G and H be two disjoint graphs. Then
o(GV H,z) =0(G,z)o(H, ).

In particular,
¢

a(K(ni,n,...,m),2) = [[ 0(On,, 2).

i=1
The above lemma is equivalent to the following:
Remark. Let G and H be two disjoint graphs. Then
k(G + H,z) = h(G,z)h(H, z).

In particular,
t

h(K (1, na, ..., ), z) = [[ h(Kn,, 2).

i=1

Lemma 2.3. (Liu (7]) Let G be a graph with e € E(G). If e = uv does not
belong to any triangle of G, then

h(Gv .’B) = h’(G — € .'t) + .’l!h(G - {ui 'U},x),

where G — e (respectively G — {u, v}) denote the graph obtained from G by
deleting the edge e (Tespectively the vertices u and v).

Denote by 8(G) the minimum real root of h(G, z).

Lemma 2.4. (Zhao [10]) Let G be a connected graph such that G contains
H as a proper subgraph. Then

B(G) < B(H).

Suppose G = K(py,pa2,...,pt) and H =G — S for a set S of s edges of G.
Define ax(H) = a(H, k) — a(G, k) for k >t + 1.
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Lemma 2.5. (Zhao [10]) Let G = K(p1,p2,...,p:) and H = G - S. If
P12 8+1, then

sSap(H)=a(H,t+1)-a(G,t+1) <2° -1,

awr1(H) = s if and only if the subgraph induced by any r > 2 edges in S
is not a complete multipartite graph, and a1 (H) = 2° — 1 if and only if
(S) =K(1,s).

Lemma 2.6. (Dong et al. [3]) Let pi,p2 and s be positive integers with
3 < p1 < p2, then

(i) Kl',.f(l”)(p;,pg) is x-unique for 1 < s <pa —2,

(i) Kf;lK“")(pl,pg) is x-unique for 1 < s <p; — 2, and
(i5i) K—*K2(py,pq) is x-unique for 1< s<p1—1

In [10], Zhao obtained the following results on Turén graph with s edges
deleted for t; + £ > 5.

Lemma 2.7. (Zhao [10)) Let s > 1 and ty; > 1. Ifp> s+2, then T~* is
x-closed.

Lemma 2.8. (Zhao [10]) Suppose s > 1 and p > s+ 2, then

(i) every T,-:jK(l‘s) is x-unique for any (i,j) where 1 < i # j < t and

|Vi|=|vj|=P: or |Vt| =p IVJ'|=p+1) oer,-|=p+1, |Vj|=P; or
Vil=IVl=p+1.

4) Tr3K2 is x-unique if t; = 2.
1,2

Note that Lemmas 2.7 and 2.8 hold for t = 2,3 and 4 (see the proofs of
Theorem 6.6.2 to Theorem 6.6.4 in [10]). Observe that if G € T~ such
that o;41(G) = s, then Lemma 2.7 also holds for p > 2 + log, s (see the
proof of Theorem 6.6.2 in [10]).

Lemma 2.9. If p > 2 +log, s and G € T™* such that 0141(G) = s, then
T-3 is x-closed.

It follows that Lemma 2.8(ii) also holds for p > 2 + log, s.

By Lemmas 2.5 and 2.8, every graph G € T~° with 0;41(G) = 2° - 11is
x-unique if p > s + 2. However, only one family of graphs G is known to
be x-unique when a;4+1(G) = s. We now give a necessary condition for two
graphs G and H in 7~* (with a;+1(G) = s) to be x-equivalent.
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Suppose F' = K(p1,ps,...,p). For G = F—38, denote by t;(G) the number
of triangles in F' that contain 7 deleted edges in S for i = 1,2,3. Suppose
G € T7° Anedge e = uvin S is of Type A (respectively, Type B and
Type C) if u € Vi, v € Vj for 1 < i < j < t; (respectively, for 1 < i < ¢y,
t1+1<j<t andfor¢ +1 <i< j<t). Denote by s1(G) (respectively,
52(G) and s3(G)) the number of Type A (respectively, Type B and Type
C) edges in S.

Lemma 2.10. Suppose G and H are two graphs in T~* with az41(G) = s.
If G~ H, then 53(G) + 253(G) + t2(G) = s2(H) + 2s3(H) + t2(H).

Proof. Let G = F — S and H = F — ' be two graphs in 7-° with
@141(G) = s. If H ~ G, then Lemma 2.1 implies that o;41(H) = s and
t(G) = t(H). Observe that both (S) and (S’) contain no K3 subgraphs. So,
t3(G) = t3(H) = 0. Note that |S] =S| = s = T3_ 5(G) = T3, s;(H).
We now consider ¢(G) and t(H). Note that both G and H has ¢; and ¢,
partite sets of size p and p + 1 respectively. Clearly,

t(F) — t1(G) + t2(G)

HEF) = s1(G)((t1 —2)p+ta(p+ 1)) —
$2(G) ((t1 — Vp+ (t2 - 1)(p+1)) -
s3(G) (t1p + (t2 — 2)(p + 1)) + t2(G)
t(F) — s(tip+ta(p + 1)) + 2sp+
52(G) + 2s3(G) + t2(G).

t(G)

Similarly,
t(H) = U(F)—sltip+ta(p+1)] +25p+ sa(H) + 283(H) + t2(H).

It follows immediately that s3(G) + 253(G) + t2(G) = so(H) + 2s3(H) +
t2(H). p

In what follows, we let F' be the Turan graph with x(F) =¢ > 2.

3 Turin graph with a matching deleted

For a graph G € K~*(p1, p2, . . ., pt), we say an induced Cy subgraph of G is
of Type 1 (respectively, Type 2, and Type 3) if the vertices of the induced

Cjy are in exactly two (respectively, three, and four) partite sets of V(G).
An example of induced Cy of Type 1, 2 and 3 is shown in Figure 1.
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Vs Vs

Figure 1. Three types of induced Cy in a t-partite graph.
Vertices joined by dotted lines are not adjacent.

Let S;; (1 <i<t,1<j<t)beasubset of S such that each edge in Sij
has an end-vertex in V; and another end-vertex in V; with |S;;| = s;; > 0.
We also say S is ideal if and only if S = S;; for some i and j, 1 <1 < ¢,
1<j<t.

Lemma 3.1. For integert > 3, let F = K(p1,p2,...,pt) and G =F — §
for a set S of s edges in F. Suppose S induces a matching in F', then

A0) = QB - Y i-V-Dss+(5) - T spsu-

1<i<j<t 1<i<j<i<t

k
S s 3l 3 ()]
1<i<j<st 1<i<jst kg{ij}
1<k<ist

i<k

Z SijSkl,

1€i<j<t
1€i<k<iLt
jg{kl}

and

K@) = KF)- > |sj > prpi| +
1<i<i<t 1gk<ist
tuiyn{ki} =0

Z 835 Skl-

1<i<j<t
1<i<k<li<t
i€ {k1}
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Proof. Let Q,(G) (respectively, Q2(G) and Q3(G)) be the number of
Type 1 (respectively, Type 2 and Type 3) induced C; in G. Observe that

S = U Sij. Hence,

1<i<i<t
_ Pi) (P L 1Y 8ij
2@ = ¥ (5)(%)- T e-ve-ns+ T (%)
1<i<j<t 1<i<j<t 1<i<i<t
s
= QP - Y (- s - sy + (2) - sysa-
1<i<j<t 1gi<j<it
Z 8i5Ski.
1<i<j<t
1€k<ti<t
i<k
Note that Z sijsa 2 0 and Z sijsk 2 0, and the equality
1gigj<ise 1€i<j<t
1<k<i<t
i<k
holds if S is ideal.

We now find Q2(G). For three distinct indices 4,3,k; 1 < 4,7,k < t, let
v;v; be an edge in S such that v; € V; and v; € Vj, and let v, v}, be two
distinct vertices in Vj. It is clear that v;uxv;viv; is a Type 2 induced Cy
in G. Since the number of 2-element subsets of V;, is (”2"), we have

Q@)= 3 [s,-,- 3 (”2")]

1<i<j<t k& {i, 4}

We now find Q3(G). For four distinct indices 1, j, k,1; 1 < 4,7, k,1 < ¢, let
v;v; and vy, be two edges in S such that v, € V, for a € {i,j,k,1}. It is
clear that v;uxv;uv; is a Type 3 induced Cy in G. Hence,

QRs3(G) = Z 878kl
1<i<jst
1<i<k<i<t
i€ {k.1}
Note that @3(G) = 0 if for any two distinct edges in S, say v;v; and vy,
{i,7}n {k,1} # 0. We now find K(G). Observe that each K, subgraph in
F has at most two edges in S. Let K,,(G) be the number of K4 subgraphs
in F' that contains m edges in S for m = 1,2. Hence, K(G) = K(F) —
Ki1(G) + K2(G). Clearly,

K(F)= Y poipspr.

1<i<j<k<i<t
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Let v;u; be an edge in S such that v; € V; and v; € V;. Then, the
number of K, subgraphs in F' that contains v;v; is Z Prpt Where

1<k<ISt
{3,7} N {k,1} = 0. Hence,

K@= > |s5 D Pkpl} :

1<i<j<t 1<k<i<t
{i,5)n{k,1} =0

Observe that there is a one-to-one correspondence between the set of Type
3 induced C; in G and the set of K, subgraph in F that contains two edges
in S. Hence, K2(G) = Q3(G).

This completes the proof.
We now present two main results that extend Lemma 2.8(ii) above.

Theorem 3.1. Suppose s > 1 and p > s+ 2, then T}, ;K’ is x-unique for

1 =1.

Proof. Suppose H ~ G = T,‘;K? with t; = 1. By Lemma 2.6, the theorem
holds for t = 2. So, we assume ¢ > 3. We shall show that H = G.

By Lemma 2.9, H € 7-¢ with t; =1, and ay41(H) = ay4+1(G) = s. Hence,
$1(G) = 83(G) = t2(G) = s1(H) = 0, and so s = s3(G). By Lemma 2.10,
we have that s = so(H)+2s3(H) +t2(H). We assert that s3(H) = t2(H) =
0. Otherwise, so(H) + 2s3(H) + t2(H) > s, a contradiction.

It follows that for H each delcted edge in S must have one end-vertex in
Vi, and another end-vertex in V; for 2 < j < t. Hence, each edge in S must
be in one of S1; (2 < j < t). Moreover, all the edges in S must induce
a matching in F. Otherwise, ecither t3(H) > 0 or ag41(H) > 8. Clearly,

H = G if S is ideal. Otherwise, we may assume that S;; #@ for2<j <k
and k > 3. Observe that each induced C4 in G and H is of Type 1 or 2. It
is easy to see that

Q(G) = Q(F) - s(p - )p+ (;) +s(t-2) (”; 1).

By Lemma 3.1, we have

QUH) = QF)-sp-lp+(,)- syysu+st-2)(P T
s(p (2) 25123151; 1581 ( 2 )
= Q(G)— Z 815811,
2<ji<iLk
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and

=
X
]

k- (13 )e+17 3 oy

2<5<k

= K(F)- (" '2' 2)8(p +1)?
= K(G).

Hence, 2K(G) — Q(G) # 2K(H) — Q(H). This contradicts Lemma 2.1.
Therefore, G is x-unique and the proof is now complete. o

Theorem 3.2. Suppose s > 1 and p > s+ 2, then T3, ;K’ is x-unique for
t, > 2.

Proof. Suppose H~G =K 1. ;K’ with t; > 2. We shall show that H = G.

By Lemma 2.9, H € T7~* with #; > 2, and a¢41(H) = a441(G) = s.
Hence, $;(G) = s and s2(G) = s3(G) = t2(G) = 0. By Lemma 2.10,
we have that so(H) + 2s3(H) + to(H) = 0. It follows immediately that
so(H) = s3(H) = t2(H) =0 and so s;(H) = s.

Therefore, relatively to H each deleted edge in S must have one end-vertex
in V; and another end-vertex in V; for 1 < ¢ < j <t;. Hence, each edge in
S must be in one of S;; (1 < i < j < t1). Moreover, all the edges in S must
induce a matching in F. Otherwise, either to(H) > 0 or a;41(H) > s.

Clearly, H = G if S is ideal. Otherwise, there exist i, j, k and ! such that
Sij 1<i<j<t)and Sy (1 <k <1<ty) are two disjoint non-empty
subsets of S. Observe that each induced Cy4 in G (respectively H) is of
Type 1 or 2 (respectively Type 1, 2 or 3). It is easy to see that

QA6) = QR - st - 17+ ) +s[(t1 -9(8) +u ("} 1)]

By Lemma 3.1, we have

e = QP -sp-17+(5) - T seu-

1<i<i<iI<t,

Z SijSki + s[(tl -2) (g) +1 (p-; 1)} +

1€i<jisty
1<kl
i<k

> Si3 Skl
1€i<i<ty
1€i<kgis<ty
i€ {k, 1}

399



= Q(G)- Z SijSil — E 8ijSki +

1<i<ji<i<t, 1€i<j<t
1€k<i<ty
i<k
Z 8ij Skl
1€i<jsy
1<i<k<iI<t
J &€ {k.1}

where E 8;ij8i+ Z sijskt > 0, and Z SijSkl 2

1<i<j<i<t 1<i<jsh 1<i<j<ts
1<k<lis<ty 1€i<k<listy
i<k i€ {k1}
0. Moreover,
t]"’2 2 t2 2
KH) = KF) - |(7) )0+t -t xpp+1)+ (5 )@+ 17| x
Z Sij + z SijSki
1<i<ji<t, 1<i<j<ty
1<i<k<ist
i g {k1}
t1 =2\ »
= K(F)-s|("] ")+t -2t xplp+ 1) +
ta
(2)(17 + 1)2] + Z 8ijSkl
1€i<jisty
1<ick<ist
J € {k1}
= K(G)+ > 84 Skl-
1<i<jst
1<i<k<gist
J & {kl}
Clearly,
2K(H)-QH) = 2K(G)-Q(G)+ Y  sysat
1<i<j<isty
Z 8ijSk1 + Z 8348kl
1<i<j<th 1<i<j<ts
1€k<i<ty 1€i<k<isty
i<k i€ {k1}

contradicting Lemma 2.1.

The proof is now complete.
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Note that Lemma 2.8(ii) now follows directly from Theorem 3.2.

A matching subgraph sK; of K(p1,p2,...,p:) is called a special sK> if no
two vertices of sK> are in the same partite set of K(p1,p2,...,pt). Let
G= € T° such that (S) is a special sK> with each vertex belongs to a
partite set of size p. For m < n, denote by K,, - K,, the graph obtained
from K, + K, by joining by an edge a vertex of K, and a vertex of K,,.
We now prove the chromatic uniqueness of the graph G= in the following
theorem.

Theorem 3.3. Suppose t; > 25 > 2 and p > 2 + log, s, then G~ is
X-unique.

Proof. Suppose H ~ G=. We shall show that H = G.

By Lemma 2.9, H € 7%, and a;41(H) = a441(G=) = s. Hence, 8;(G=) =

s and 83(G=) = s3(G=) = t2(G7) = 0. By an argument similar to that in

Theorem 3.2, we conclude that s;(H) = s and s3(H) = s3(H) = t(H) =

Hence, each deleted edge in S must have one end-vertex in V; and another

end-vertex in V; for 1 < ¢ < j < t;. Moreover, all the edges in S must

induce a matching. Otherwise, either t2(H) > 0 or az41(H) > s.

Claim. (S) is a special sK».

Proof of the claim Suppose the claim is not true. We shall show that

B(G=) > B(H), contradicting 3(G=) = B(H).

By Lemma 2.2, we have h(G=,z) = [h(K, - Kp,z)]*[h(Kp, z)]" =% x

[A(Kps1, )] and h(H,z) = h(H,2)[h{(Koy1, 25 So, h(C=,z) =

h(H z) implies that h(G',z) = h(H’ z) for h(G',z) = [h(Kp - K,,,:z:)]
x [h(Kp,z)]*=2°. Clearly, H is a graph that contains a K, - K, as a

proper subgraph. Hence, by Lemma 2.4, 8(G") = B(K, - Kp) > ﬂ(l}?—),

contradiction.

By the above claim, we have that H = G= and the proof is now complete.

a

4 'Turan graph with a star deleted

A star subgraph K(1,s) of K(p1,p2,...,p:) is called a special K(1, s) if no
two end-vertices of K(1,s) are in the same partite set of G. Let GieT*
such that (S) is a special K(1, s) with each vertex belongs to a partite set
of size p+1, and for t2 = 1, let G5 € 7~* such that (S) is a special K(1, s)
with central vertex belongs to the only partite set of size p + 1. We now
prove the chromatic uniqueness of the graphs G} and G} in the following
two theorems.
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Theorem 4.1. Suppose 1 < s < t2—1 and p > 2 + logy s, then Gf is
X -unique.

Proof. Suppose H ~ G}. We shall show that H = G7.

By Lemma 2.9, H € 77* and ai+1(H) = a¢41(G]) = s. If s = 1, then
Lemma 2.10 implies that s3(H) = 1. So, H = G}. Hence, we may assume
s > 2. Now, 51(G}) = 82(GY) = 0, t2(G7) = (2) and s = s3(G1). By
Lemma 2.10, we have 2s + (3) = so(H) + 2s3(H) + to(H). Note that
tao(H) < (5). We assert that s, (H) = s2(H) = 0.

If s;(H) # 0, then so(H) + s3(H) < s. Hence sa(H) + 2s3(H) + t2(H) <
2s+(3), a contradiction. Therefore, s;(H) = 0. Consequently, if s2(H) # 0,
we also have a similar contradiction. Hence, s3(H) = s and t2(H) = (3).

Claim. (S) is a special K(1,s).
Proof of the claim. Suppose the claim does not hold. We now show

that to(H) < (3), which is a contradiction. We proceed by induction on s.

If s = 2 and (S) is not a special K(1,2), then to(H) =0 < ( ). Hence,
the claim holds for s = 2. Assume that the claim holds for s = n > 3.
Let s =n + 1 and (S} is not a special K(l n + 1). Suppose e is an edge
in S, then S — {e} has n edges. Let t5 (respectively t7) be the number
of tnangles in K(p1,p2,...,p:) that contain two edges in S and do not
contain (respectively contain) the edge e. We consider two cases.

Case 1. (S — {e}) is a special K(1,n). In this case, edge e is not adjacent
to the central vertex of K(1,n). Therefore, t5 = (3) and t7 < 1. Hence,
to(H) < (5) +1< ("3

Case 2. (S — {e}) is not a special K(1,n). In this case, max{tz(H)} is
attained if the edge e is a.dJacent to each edge in (S — {e}). By induction
hypotheses, tj < (%), whereas tj < n. Hence, t2(H) < (3) +n = ("}1).

Therefore, the claim holds. Consequently, we have H = G7.

The proof is now complete.

Corollary 4.1. Suppose 1 < s < t—1 and p > 2 + logys, then
K=3(p,...,p) is x-unique if (S) is a special K(1,s).
t

Theorem 4.2. Suppose 1 < s < t—1 and p > 2 + logy s, then G5 is
Xx-untque.
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Proof. Suppose H ~ G3. We shall show that H = G3.
By Lemma 2.9, H € K~*(p,...,p,p+ 1) and as41(H) = a44+1(G3) = s. If

t—1
s = 1, then Lemma 2.10 implies that s3(H) = 1. So, H & G}. Hence, we
may assume s > 2. Now, 51(G3) = s3(G3) = s3(H) = 0, s2(G%) = s and
t2(G3) = (3). By Lemma 2.10, we have s + (3) = sp(H) + t2(H).

Note that t2(H) < (5). We assert that s;(H) = 0. Suppose s;(H) # 0,
then so(H) < s. This means sy(H) + t2(H) < s + (3), a contradiction.
Hence, s3(H) = s and ¢3(H) = (3). From the claim in the proof of Theo-
rem 4.1, we know that (S) is a special star with central vertex in V;. Hence,
H=G:.

The proof is now complete.

Remark. Theorem 4.2 is best possible in the sense that if G% contains
more than one partite set of size p + 1, then it is not y-unique. We can
see this as follows. For ¢1,t2 > s > 2, let G’ (respectively G”) be a graph
in 77* such that (S) is a special K(1,s), s > 2, where the central vertex
belongs to partite set of sizc p (respectively size p+ 1) and the end-vertices
belong to partite sets of size p + 1 (respectively size p). It is clear that
G' # G". By Lemma 2.3 and mathematical induction on s, it is easy
to show that h(G’,z) = h(G”,z) for all p > 1. Hence, G’ and G” are
chromatically equivalent. It follows immediately that for integers k > 1,
G'VG'V...VG is chromatically equivalent to G"VG” V...V G” but

—

k

k
they are not isomorphic.

Note that for G’ with ¢; < s and G” with t2 < s, we have G’ # G”. We can
show that G’ (respectively, G”) is x-unique if ¢; < s (respectively, 2 < s)
for s = 2,3. We end this paper with the following conjecture and problem.

Conjecture 4.1. The graphs G’ with t; < s and G" with t < s are
X-unique.

Problem 4.1. Study the chromaticity of Turdn graphs with a matching or
a star deleted.
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