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Abstract

As applications of the Anzahl theorems in finite orthogonal spaces,
we study critical problem of totally isotropic subspaces, and obtain
critical exponent.

Key words: Orthogonal space; totally isotropic subspace; critical
problem.

1 Introduction

In this section we shall introduce the concepts of totally isotropic subspaces
in orthogonal spaces. Notation and terminologiy will be adopted from
Wan'’s book [5).

Let F, be a finite field with ¢ elements, where ¢ is a prime power.
Denote by K345 the set of all (2v + 8) x (2v + §) alternate matrices over
+ Fy, where § = 0,1 or 2. Two (2v + 8) x (2v + 6) matrices A and B over
F, are said to be congruent mod Ky, 45, denoted by A = B (mod Kayts),
if A— B € Kg,4+5. Clearly, = is an equivalence relation on the set of all
(2v+46) x (2v +5) matrices. Let [A] denote the equivalence class containing
A. Two matrix classes [A] and [B) are said to be cogredient if there is a
nonsingular (2v + &) x (2v + ) matrix Q over F, such that [QAQ?] = [B].
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For ¢ being odd, let

0 I® 9, if § =0,
Sosrsa=| I®) 0 , where A= (1)or(z), ifé=1,
A diag(l,-2), ifd=2,

where z is a fixed non-square element of F,. For q being even, let

(s) @, ifd= 0,
< 0 I% (1), if6=1,
2846, 8 = 0 , Where A =
A

("‘ 1 ) if 6 =2,
23

where « is a fixed element of Fy such that o ¢ {22 + z|z € F,}. The
orthogonal group of degree 2v + 4 over Fy with respect to Sz,4.5 A, denoted
by O2y+s, a(Fy), consists of all (2v+8) x (2v+6) nonsingular matrices T' over
F, satisfying [T'S2,45,aT*] = [S2v+5, a]- There is an action of Ozy+5,a(Fyg)
on F2/+4 defined as follows:

') 2v+6
F2*8 x Ogus,a(fq) — F2*

((ml)z2a"-1m2u+6)! T) = (31,332,-..,222;,4.5)'11.

The row vector space F2“*% together with the above group action of
Oay+3, a(Fg) is called the (2v+6)-dimensional orthogonal space over Fq. Let
P be an m-dimensional subspace of Fg”*‘, denote also by P an m x (2v+9)
matrix of rank m whose rows span the subspace P and call the matrix
P a matrix representation of the subspace P. An m-dimensional sub-
space P in the (2v + §)-dimensional orthogonal space is a subspace of type
(m,2s +1,s,T) if PSay45 4Pt is cogredient to diag(Szs4, r, 0(m~20-7),
In particular, subspaces of type (m,0,0) are called m-dimensional totally
isotropic subspaces, and v-dimensional totally isotropic subspaces are called
mazimal totally isotropic subspaces. Let M(m,2s + v, s,T';2v 4+ §,A) de-
note the set of type (m,2s + v,s,I'). For g being odd, by [5, Theorem
6.3), subspaces of type (m,2s + <, s,T) exist in the (2v + §)-dimensional
orthogonal space F2/+? if and only if

v+s+min{y,d}, ify#dory=4dandl = A,
23+75m5{u+s, ify=6=1andT #A.

For g being even, by [5, Theorem 7.5], subspaces of type (m,2s + v, s,T)
exist in the (2v + §)-dimensional orthogonal space F2“*4 if and only if

v+s+min{y,6}, ifd#l,ory#l,ory=0=1
25+y<m< and I' =1,
v+s, ify=0=1andT"'=0.
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By [5, Theorems 6.4 and 7.6], Oa,.+5, a(Fy) acts transitively on M(m,2s +
7,8,T;2v +6,4).

Let N(m, 25+, 3,T; 2v+4, A) = [M(m, 25+, 5,T; 2v+6, A)|. Let P be
a fixed subspace of type (m,2s++,s,I") in F2”+5 Denote by M(m,,2s; +
M,81,T'1;m,28 +7,8,T;2v + 6, A) the set of subspaces of type (m,2s; +
T, 851,T'1) contained in P, and let N(my,2s;+71,81,T1;m, 2547, s,T; 20+
6,A) = [M(m1,28,+m,81,T1;m, 284+, 5,T; 20+4, A)). Let P, be a fixed
subspace of type (m1,2s; + v, $1,'1) in F3“*%. Denote by M’(my,2s; +
TM,51,1'1;m,28 + 7,8,T;2v + 4, A) the set of subspaces of type (m,2s +
7,8,T) containing Py, and let N'(my,2s; +m,s1,1;m,28 4+ 7,5, T;2v +
6’ A) = IM'(mly 231 + 7,81, Pl; m, 25+ Ys S,P; v+ 6! A)l

Critical problems are interest problems and have a vast literature (see
(3, 6], for examples). The results on the critical problems of subspaces
under finite classical groups can be found in Wan ([4]), Crapo and Rota
([1]), Kung ([2]). In [1], Crapo and Rota study the critical problems of
finite vector spaces. In [2], Kung studies the critical problems of totally
isotropic subspaces of finite symplectic spaces. In [4], Wan studies the
critical problems non-isotropic subspaces of finite unitary spaces. Their re-
searches stimulate us to consider the critical problems of orthogonal spaces.
In this paper, we study the critical problems of totally isotropic spaces of
orthogonal spaces.

2 Main results

In this section, we shall study the critical problems of totally isotropic
spaces of orthogonal spaces. We begin with some useful lemmas.

Lemma 2.1. Letv > k > r. The number of k-dimensional totally isotropic
subspaces in the (2v + 6)-dimensional orthogonal space IF2"+" containing a
given T-dimensional totally isotropic subspace is

k—r—1 y—r—i _ y—r—ipd—1
N'(r,0,0;%,0,0;2v + 6,8) = ] (g 1)(g +1)
=0

qk-'r-t -1



Proof. By [5, Corollaries 6.23 and 7.25],

I (¢ -1+ 1+1)

N(T) 0, O; 2v+ 6’ A) - i=y—r4l _ |
[T(e-1)
=1
I (@ -DE@rt+)
N(ky 0, 0; 21/ + 6’ A) = i=v—k+1 _
I1(a*~1)
Clearly,
k .
I @-1
N(r, 0) 0; k, 0, 0; 2[/ + 6, A) = t=k:r+l
E(q‘ -1)

In order to compute N'(r,0,0;k,0,0;2v + 8, A), we define M to be a
binary matrix with row-indexed (resp. column-indexed) by M(r,0,0;2v +
5,A) (resp. M(k,0,0;2v + 6,A)), whose (A, B) entry M(A,B) = 1 if
A C B, and 0 otherwise. Counting the number of 1’s in the matrix by
rows, we obtain

N(r,0,0;2v + 6,A)N'(r,0,0;k,0,0; 2v + §, A).
Counting the number of 1's in the matrix by columns, we obtain

N(k,0,0;2v + 8, A)N(r,0,0;k,0,0; 2v + 4, A).
Therefore,

N'(r,0,0;k,0,0;2v + 6, A)
N(k,0,0;2v + 6, A)N(r,0,0;k,0,0; 2v + 4, A)
N(r,0,0;2v + 4, A)

I (¢ -1 +1)
i=v—k+1
k—r

I1(¢-1)

t=1

k—r—1 (qv—r—i _ 1)(qu—r—i+6-1 +1)
qk-r—i -1 :

i=0
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Corollary 2.2. The number of mazrimal totally isotropic subspaces in the
(2v+0)-dimensional orthogonal space Fg"'*'& containing a given r-dimensional
totally isotropic subspace is

v—r—1

N'(r,0,0;4,0,0;2v +6,8) = ] (¢~ 41).

i=0

A set X of vectors over ng" + is said to be isotropic set, if uSv’ = 0, for
all u,v € X. Let X be a non-empty set of vectors of ]Fg""'a. Denote by {X)
the subspace spanned by X. Clearly, (X) is a totally isotropic subspace
if X is an isotropic set of vectors. The rank of X, denoted by r(X ), is
defined as dim(X). If X =@, we agree that (X) =@ and r(X) =

Let S be a set of non-zero vectors in orthogonal space F2”+5 A totally
isotropic subspace P is said to distinguish Sif PNS =0, The orthogonal
critical ezponent of S, denoted by cor(S, F2#*9) is defined as the minimum
positive integer A < v + 1 such that there exists a (v + 1 — A)-dimensional
totally isotropic subspace distinguish S. Let P, P,,..., P, be A maximal
totally isotropic subspaces. (Py, P, ..., Py) is called the A-tuple of maximal
totally isotropic subspaces, if

dim(PLNP)=v—-1,dm(P NPRNP)=v-2
, dim(P,APN---NP)=v+1-A

Since any (v+1-\)-dimensional totally isotropic subspace is an intersection
of a A-tuple of maximal totally isotropic subspaces, the orthogonal critical
exponent of S can also be defined as minimum positive integer A such that
there exist a z\-tuple of maximal totally 1sotrop1c subspaces (P, Py, ..., P))
such that ﬂ,_l P; distinguishes S, i.e. (ﬂt_ P)nS=0. By conventxon
we also regard the intersection of totally isotropic subspace of O-tuple as
F2v+8, The equivalence of the two definitions is clear.

Let S be a set of non-zero vectors in F2#+4, M(S) be the matroid on
S defined by linear independence of vectors, and L(M(S)) be the lattice
of flats of M(S). An isotropic flat is a flat which is also an isotropic set
of vectors. Clearly, subsets of isotropic set of vectors are also isotropic.
It follows that the collection of isotropic flats forms an ideal in the lattice
L(M(S)) and this ideal will be denoted by L;(M(S)).

Lemma 2.3. Letv > k > r. The number of k-dimensional totally isotropic
subspaces in the (2v + §)-dimensional orthogonal space F2”+ containing a
given rank-r isotropic set of vectors is

qk—r—t -1

N'(r,0,0;k,0,0;2v + 6,A) =

i=0



Proof. When r = 0 our lemma follows from [5, Corollaries 6.23 and 7.25].
Now assume that » > 0. Let P be a k-dimensional totally isotropic sub-
space. The P D X if and only if P 2 (X). Therefore by Lemma 2.1
the number of k-dimensional totally isotropic subspaces in the (2v + §)-
dimensional orthogonal space 11“3"""s containing a given rank-r isotropic set
of vectors is

N'(r,0,0;%,0,0;2v + 6,A) =

k’II"‘ (qv—r—t - 1)(qv—r—1+6—1 + 1)
k—r—i _
i=0 g 1

a

Corollary 2.4. The number of mazimal totally isotropic subspaces in the
(2v + 8)-dimensional orthogonal space ]Fg""“s containing a given rank-r
isotropic set of vectors is

v—r-1
N'(r,0,0;1,0,0;20 +6,4) = [ (¢ +1).
=0

Theorem 2.5. Let S be a set of non-zero vectors in the (2v+06)-dimensional
orthogonal space F2"+5 M(S) be the matroid on S defined by linear inde-
pendence of vectors, L(M(S)) be the lattice of flats of the matroid M(S),
Li(M(S)) be the ideal of isotropic flats in the lattice L(M(S)), and p be the
Mébius function on L(M(S)). Then for any positive integer A < v+ 1, the
number of (v+1— X)-dimensional totally isotropic subspaces distinguishing
S is equal to

v=A=r(X) . _r(X)=i _ v—r(X)—i+é-1
(g~ 1)(q + 1)
Z /"(Q’ X) H qu+l —A-r(X)-i _ 1

XeL;(M(S)): i=0

r(X)Sv+1-X
Proof. Let X be a flat of M(S). Denote by g(A, X) the number of (v+1-2X)-
dimensional totally isotropic subspaces containing X. If X is isotropic and
7(X) £ v+ 1- ), then by Lemma 2.3

v=A=r(X) , f_p(X)—i —r(X)—i+é—1
(¢ X0~ - 1)(¢” +1)
g(’\a X) = H v4+1-A-r(X)-i _ ]
=0 g
If X is not isotropic or X is isotropic with 7(X) > v+1—A, then g(A, X) =
0. Denote by f(A, X) the number of (v+1— A)-dimensional totally isotropic
subspaces P such that PN S = X. Then

oA X) = > FAY).

YeL(M(S)):Y2X
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By Mébius inversion

fY)

= > #(Y, X)g(), X)
XeLi(M(S)): X2Y

v=2A-r(X) , o r(X)=i —r(X)—i+6—1
(g~ r*)—E — q)(gv-rX)—iHi-l 4 q)
= Z (Y, X) H @ HA—r(X)—T _ ] '
XeLp(M(S)): X2Y =0

and r(X)<v+1=2

For Y =0, f(),0) is the number of (¥+ 1 — A)-dimensional totally isotropic
subspaces distinguishing S. The theorem is proved. a

Corollary 2.6. Let S be a set of non-zero vectors in the (2v+8)-dimensional
orthogonal space F2*+¢, M(S), L(M(S)), Li(M(S)),u be as in Theorem
2.4. Then

Cor (S, F2v+9)
= min /\l Z u(Y, X)

X€eL;(M(S))
with r(X)Sv41=X

X qu+1—A—r(X)—i -1

=0

In a similar way from Corollary 2.4 we deduce

Theorem 2.7. Let S be a set of non-zero vectors in the (2v+6)-dimensional
orthogonal space Fg""". Then the number of A-tuples of mazimal totally
isotropic subspaces distinguishing S is

v=r(X)-1
> ow0x) JI (@O0t
XeL(M(S)) i=0

Corollary 2.8. Let S be a set of non-zero vectors in the (2v+8)-dimensional
orthogonal space F2*%, Then

cor(s’ ]Fgu+6)
v-r(X)
= min { )\l Yo w@Xx) [ @O s o} :
XeLi(M(8)) i=1
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