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Abstract

An extended directed triple system of the order v with a idempo-
tent element (EDTS(v, a)) is a collection of triples of the type [z, , ],
[z,y,z] or [z, z,z] chosen from a v-set, such that every ordered pair
(not necessarily distinct) belongs to only one triple and there are a
triples of the type {z,z,z}. If such a design with parameters v and
a exist, then they will have b,,, blocks, where b,,. = (v* + 2a)/3.
A necessary and sufficient condition for the existence of EDTS(v, 0)
and EDTS(v, 1) are v = 0 (mod 3) and v # 0 (mod 3), respectively.
In this paper, we have constructed two EDTS(v,a)’s such that the
number of common triples is in the set {0,1,2,...,by,a — 2, by,o}, for
a=0,1.

1 Introduction
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A directed triple system of order v, DTS(v), is a pair (V,T), where T
is a collection of transitive triples from a v-set V, such that every ordered
pair of distinct elements of V' is contained in exactly one transitive triple
of T (The transitive triple [a, b, ¢] contains the ordered pairs ab, bc, ac but
not ab, be, ca). This concept was introduced by Huang and Mendelsohn
[11], who proved that a DTS(v) exists if and only if v # 2 (mod 3). In the
same way, Steiner triple systems and Mendelsohn triple systems have been
generalized to extended triple systems [2, 12] and extended Mendelsohn
triple systems [1], respectively. The concept of such a system, similar to
a DTS, is introduced in which a triple may have repeated elements. An
extended directed triple system of order v, EDTS(v), is a pair (V, B), where
B is a collection of ordered triples from a v-set V' (each ordered triple
may have repeated elements) such that every ordered pair of elements of
V, not necessarily distinct, is contained in exactly one ordered triple of
B. The elements of B are called blocks. There are five types of blocks:
Olab,d, (2la,b,a], (3)a,a,b), (4)b,a,a] and (5)[a,a,a) in which they
are the set of ordered pairs {ab, bc,ac}, {ab, ba,aa}, {aa,ab}, {ba,aa} and
{aa}, respectively. For convenience, we call the transitive triple for type (1),
2-arc lollipop (2-lollipop for brevity) for type (2), 1-arc lollipop (1-lollipop
for brevity) for type (3) or (4), and loop for type (5). Let b3, b, b1, and bo
be used to denote the number of blocks of (V, B) that are of the type (1),
(2), (3) or (4), and (5), respectively. A simple counting argument shows
that if (V, B) is EDTS(v), then

b3 = %(‘U(v—l)—zbz—bl) (1)
bo = v—ba—b (2)

Evidently bz and bg are determined by bz and by. Let {v; b, b1} denote
the class of EDTS(v) with parameters b, and by. We say that {v;b2,b1}
exists if there is a design with the specified parameters.

In [7), it was shown that the necessary and sufficient conditions for the
existence of the class {v;ba,b1} are by # 1, 0 < bp +b; < v and
(1) ba = by(mod 3) for v # 2(mod 3);

(2) b2 = by + 1(mod 3) for v = 2(mod 3).

In graph notation, a DTS(v) is equivalent to the decomposition of the
digraph D, into transitive triples, where D, is the complete symmetric
digraph of order v. And an EDTS(v) is equivalent to the decomposition
of the digraph D into transitive triples, 2-lollipops, 1-lollipops and loops,
where D7 is the digraph obtained by attaching a loop to each vertex of
D,. In the following paragraphs, we consider the systems with &, = 0. An
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extended directed triple system of order v with a loops and b, = 0 will
be denoted by EDTS(v,a). If (V, B) is an EDTS(v,a), then |B| = b, 4 =
(v? + 2a)/3.

From the results of [7], the necessary and sufficient conditions for the
existence of an EDTS(v, a), with 0 < a < v, are:

(i) if v = 0 (mod 3), then a =0 (mod 3);
(ii) if v # 0 (mod 3), then a =1 (mod 3).

Recently, some papers investigated the possible number of common
blocks with two generalized triple systems with the same parameters, based
on the same v-set. G. Lo Faro [14] considered this problem for extended
triple systems without idempotent; W. C. Huang [6, 8] for extended triple
systems; K. B. Huang, W. C. Huang, C. C. Hung and G. H. Wang 9, 10]
for extended Mendelsohn triple systems; and C. M. Fu, Y. H. Gwo and F.
C. Wu [4] for semi-symmetric latin squares.

In this paper, we have considered the intersection problems for the sys-
tems EDTS(v,0) and EDTS(v,1). Let J[v,a] be the set of non-negative
integers k such that there is a pair of EDT'S(v, a) with k common blocks,
let Ifv,a] = {0,1,2,...,b,4 — 2,bya}. Since the smallest possible mutu-
ally balanced subsets of an EDTS(v, a) are {[z, y, 2], (2, ¥, z]} (which can be
changed to {y,z, 2], [2,z,]}), it follows that J[v,a] C I[v, a].

Main Theorem J[v,0] = I[v,0], for v = 0 (mod 3) and v # 3, and
J[v,1] = I[v,1], for v # 0 (mod 3) .

Let A and B be two sets of integers and & a positive integer. We
define A+ B={a+b|la€ Abe B},k+A={k}+ A, and kA =
{k-a | a € A}. For convenience, we denote the k-triple (v;,vs,...,vx) by
{[’Uli ’02,’01], ['02, 1)3)1-’2]’ vy [vk—lr vk’vk—l]a [vk:vkavk]} where v; '7é V; for all
i # J- And ('U],,’U2, v ,vk,'Ul) = {['Uh vz, vl]a [’02,’03,’02], ey ['Uk—la vk:vk—l.],
[vE, v1, ve]}-

2 Auxiliary constructions of EDTS

As usual, K, is the complete graph on v vertices. An r-cycle is an
elementary cycle of length r and is denoted by the sequence of its vertices
(z1,%2,...,Z,). In [5), if v is even then K, can be decomposed into v — 1
1-factors and if v is odd then K, can be decomposed into (v — 1)/2 edge-
disjoint spanning cycles. In each case, we can construct transitive triples
as follows:
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Method 1. Let F be a 1-factor of K, on V and u be any vertex not in
V. T(F,u) = {[z, w9}, [y,u,2] | {z,y} € F}.

Method 2. Let C = (¢, ¢c2,. - -, ¢y) be a spanning cycle of K, on V and
a and b be any two different vertices not in V. T(C,ea,b) = {[c1,8,¢2],
[62,0,, 63], ERE) [cv, a, 61], [cv, b, cv—lli [cv—l’b’ c.,_z], SRR} [cl’ b, cv]}

In order to count the number of common blocks of the two extended

directed triple systems, we need some special embedding constructions. Let
(Wi, B1) be an EDTS(v, a), where V; = {a1,az,...,a,}.

(1) v to 2v, v even

Let F = {F; |i=1,2,...,v—1} be a 1-factorization of K, on V = {z1,
Z3,...,Ty}. Lt V=ViUVz and B =B UTUL, where T = U{T (Fi,ai) |
i=12...,v—1} and L = {[z,ay,2] | z € V2}. Then (V,B) is an
EDTS(2v, a).

(2) v to 2v, v odd

Let C = {C; | i = 1,2,...,(v — 1)/2} be the edge-disjoint spanning
cycles of K, on V = {z;, %2, ..., Ly} Let V =V;UV; and B = ByUTUL,
where T = U{T(Ci, agi-1,02:) | i = 1,2,...,(v—1)/2} and L = {[z,ay,7] |
z € V,}. Then (V, B) is an EDTS(2v, a).

(3) v to 2v+3, v even

Let C = {C; | i = 1,2,...,v/2 + 1} be the edge-disjoint spanning
cycles of Ky43 on Vo = {21, 22, ...,Tvy3}. Let V.=VyUV; and B =
B,UTUL, where T = U{T(C;i,az2i-1,02) | ¢ = 1,2,...,v/2} and L =
(Ziys Tigy - -y Tiyyqs T, ) for the last spanning cycle Cy/o41 = (Ziyy Tigyer oy
Ti,,s). Then (V, B) is an EDTS(2v + 3, a).

Let F = {F; | i = 1,2,...,2v — 1} be a 1-factorization of K3, on
N ={1,2,...,2v}. If F;,, F; € F, the notation F, - F} [14] will denote the
following set of blocks: (1, iy, Tig, - -+ »Tiny 1) U {Zjy s Tjar Tjgy - -1 Tjyr Tiy ) U
U {Zpy s Tpgs Tpas -+« » Tpey Tpy ) U (Tqys gz Tggy -+ -y Tqm» Tqy) Where x5, =

min(N \ {1, Tigs Tigs -+« 1 Tin })s + vy Tgy = MIN(N \ {1, Ziy, Tig - .+, Tiy Tjy,
Tjas Tigr-+s Tipr ey Tpyy Tpas Tpar -+ 1 Zpe s Fo = {1%ip, TigZigs -+ Tipy
Ti,y a:j‘z,-,,zjsa:jd, seey a:j__la:j,,...,xm:cm,x,,sxm,...,xp'_lzz:p,, Tq,Tgy

TgsZqas- - - Tamo1Tqm } 8NA Fo = {Zi, iy, TigTigs - - - Tin 1, TjaTjs ) TjaTigy - -+
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Tj,Tjys v+ s TpaTpgy TpyTpgy « - - s Tp, Tpys TgaTgsr TaaLggs - - - s Tqmn Ly }- FOT €X-
ample, let F; and Fj, be two 1-factors in K14, where F, = {{1,3}, {4,8}, {2,
14}, {11,13}, {5,6},{7,9}, {10,12}} and F = {{3,4}, {8, 1}, {14, 11}, {13,
2},{6,7},{9,10},{12,5}}. Then F, - F; = (1,3,4,8,1) U (2, 14,11,13,2) U
(5,6,7,9,10,12, 5).

(4) v to 2v + 3, v 0odd

Let F = {Fi | ¢ = 1,2,...,v 4+ 2} be a l-factorization of K,,3 on
Vo = {z1, 22, ...,Zy43}. Let V.=VjUV, and B = B, UT U L, where
T =U{T(F;,a;)|i=1,2,...,v} and L = Fyy, - F,4. Then (V,B) is an
EDTS(2v + 3,a).

3 For the Class of EDTS(v,0)

Lemma 3.1 If J[v,0] = I[v,0] and v is an integer > 9 then J[2v,0] =
I[2v,0).

Proof. By using constructions 1 and 2, we can embed an EDTS(v,0) in
an EDTS(2v,0). By replacing an EDTS(v,0) and interchanging any two
vertices of V; corresponding to different 1-factors or spanning cycles to
form different transitive triples or lollipops, we obtain J[2v,0] 2 J[v,0] +
{0,9,2v,...,(v — 2)v,v%}. If v > 9 and J[v,0] = I[v,0] then J[2v,0] D
I{2v,0]. Therefore J[2v,0] = I[2v, 0]y

Lemma 3.2 If J[v,0] = I[v,0] and v is an integer > 6 then J[2v +3,0] =
I[2v + 3,0].

Proof. By using constructions 3 and 4, we can embed an EDTS(,0) in
an EDTS(2v + 3,0). By replacing an EDTS(v,0) and interchanging any
two vertices of V; corresponding to different 1-factors or spanning cycles
to form different transitive triples or lollipops, we obtain J[2v + 3, 0 2
Jv,0] + {0,v + 3,2(v + 3),...,(v — 2)(v + 3),v(v + 3)}. If v > 6 and
J[v,0] = I[v,0] then J[2v + 3,0] 2 I[2v + 3,0]. Therefore J[2v + 3,0] =
I[2v+3,0)4

There are precisely two EDTS(3,0): (1,2,3,1) and (1,3,2,1). So, we
have J[3,0] = {0,3} C I[3,0] = {0, 1, 3}.
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Lemma 3.3 J[v,0] = I[v,0], forv=6,9,12.

Proof. For v = 6, using a similar argument to Lemma 3.1, we obtain
{0,3,6,9,12} C J[6,0]. Let Ty = (1,2,3,1)U {[4,1,4], [5,3,5], [6,2,6],
(6,3, 4], [4,3,6], [5,4,2], [2,4,5]}UA, where A = {[6,1,5], [5,1,6]}. Now, N,
comes from T} by removing the blocks A and replacing them with {[6, 5, 1],
(1,5,6]}. Then, [T} N Ny| = 10. Using the isomorphic designs obtained
from T} by permuting elements in Table 1, we have J[6,0] = I[6,0].

Table 1
Intersection Size | Intersection Size
Tin(12)(d56)T, | 1 | Tin (3T 5
Tin (256)(34)T1 2 TN (13)(45)T1 7
in (123)(56)T1 4 in (25)T1 8

For v = 9, using a similar argument to Lemma 3.2, we obtain {0, 3,6,9,
12,15,18,21,24,27} C J[9,0]. Let Ty = (4,6,5,4) U (7,8,9,7) U {[3,5,7),
[7,5,3], [3,4,8], [8,4,3]} UAUBUC, where A = (1,2,3,1) U {2,5, 8],
8,5.2], [2,6,7), (7,6,2]}, B = {[1,4,7), [7,4,1), [1,5,9], [9,5,1], [1,6,8],
[8,6, 1], [2,4,9], [9,4,2], and C = {[3,6,9], 9,6,3]}. T> = {[5,1,5], [6,2,6),
(7,3,7), 18,4,8], 9,4,9], {1,3,6], [8,6,1], [1,7,9), [3,1,8], [9,7,1], 3,5,9),
5,8,3], [6,9,3], [9,5,6], [7,4,6], [6,7,8], [6,5,4], [8,5,7]} U DU E, where
D=(1,2,3,4,1) and E = {{2,4,5), [2,8,9], [4,2,7), [7,5,2], [9,8,2]}. Now,
N; comes from Tj by removing the blocks A and replacing them with
(1,3,2,1) U {[7,2,6), 6,2,7], [8,2,5], [5,2,8]}. Nz comes from Tj by re-
moving the blocks B and replacing them with {[7,1,4], [4,1,7], [5,1,9],
[9,1,5], [8,6,1], [1,6,8], [4,2,9], [9,4,2]}. N3 comes from T; by removing
the blocks C and replacing them with {[6,3,9], [9,3,6]}. N4 comes from
T, by removing the blocks D and replacing them with (1,4,3,2,1). N;s
comes from Ty by removing the blocks E and replacing them with {[2,4, 7],
[4,5,2], [7,2,5], [8,2,9),(9,2,8]}. And Ng comes from N3 by removing the
blocks C and replacing them with {[6,3,9], 9,3, 6]}. From |T} N Ng| = 17,
ITlﬂNzl =19, |T1 r\Nll = 20, |T2 ﬂNsI =22, |T2 ﬂN4| =23, IT] ﬂN3| =25
and Table 2, we have J[9,0] = I[9,0].

Table 2
Intersection Size Intersection Size
T, N (67)(89)T1 1 To N (789)T2 10
Ty N (34)(6789)Ty 2 T, N (56)(789)T% 11
T N (67)(89)T 4 T) N (89)T; 13
T, N (6789)Ty 5 T> N (59)T5 14
in (56)(79)T1 7 N (23)(56)(78)T2 16
Ty N (678)Ty 8
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For v = 12, using a similar argument to Lemma 3.1, we obtain J[12,0] D
1[12,0]\ {34,35,46}. Let Ty = (1,5,9,1) U {[6,5,6], [7,6,7], [8,6,8], [10,9,
10, [11,10,11], {12,10,12], [1,7,11], [11,7,1], [1,8,12], [12,8,1], [2,5, 10),
[10,5,2], [2,8,11), [11,8,2), [3,8,10], [10,8,3], [4,7,10], [10,7,4], [9,8, 4],
4,8,9], [5,7,8], [8,7,5], [9,11,12], [12,11,9]} UBUCU DU E, where B =
{[2,6,12],[12,6,2], [2,7,9), [9,7,2], [3,6,9), [9,6,3], [3,7, 12], [12,7,3]}, C =
{13,5,11), [11,5,3], [4,5,12], [12,5,4), [4,6,11], [11,6,4]}, D = {[2,1,2),
(3,2,3], [4,2,4], [1,3,4], [4,3,1]} and E = {[1,6,10], [10,6,1]}. Now, N,
comes from T} by removing the blocks B U C and replacing them with
{[2,6,9), [9,6,2], [2,7,12], [12,7,2), [3,5,12], [12,5,3], [3,6,11], [11,6,3],
3,7,9], [9,7,3], [4,5,11], [11,5,4], [4,6,12], [12,6,4]}. N, comes from T}
by removing the blocks B U D and replacing them with {[2,6,9], [9,6,2],
[2,7,12], [12,7,2}, [3,6,12], [12,6,3], [3,7,9],(9,7,3], [3,1,3], [2,3, 2], [4,3, 4],
(1,2,4], [4,2,1]}. And N3 comes from T} by removing the blocks E and re-
placing them with {[6, 1,10], (10,1, 6]}. From [TyNN;| = 34, [T, NNz| =35
and |T} N N3| = 46, we have J[12,0] = I[12,0].g

Combining the above Lemmas 3.1, 3.2 and 3.3, we obtained the following
results:

Theorem 3.4 J[v,0] = I[v,0] for v = 0 (mod 8), v > 3 and J[3,0] =
{0,3}.

4 For the Class of EDTS(v,1)

Lindner and Wallis [13] and independently Fu [3] prove that there exist
two DTS(v) intersecting in s triples if and only if s € S, = {0, 1,2,...,v(v—
1)/3 - 2,v(v — 1)/3}, for v # 2(mod 3). So, if v # 0(mod 3), there exist
two DTS(v — 1), (V, By) and (V, By), with [By N By| = r € S,_;, where
V={1,23,...,v-1} Let V* = VU{v}, B} = ByUN and B} = BoUN,
where N = {[1,v,1},(2,v,2],(3,7,3},...,[v — 1,v,v = 1],[v,v,v]}. Then
(V*,Bt) and (V*, B3) are two EDTS(v,1) and they have v + r common
blocks. Therefore,

v+ Sy = {‘U,’U-l-l,‘v+2,...,bu,1 —2,bv,1} - J[‘U,l] (3)

The missing data {0,1,2,...,v — 1} can be obtained by the following two
Lemmas.

Lemma 4.1 If J[v,1] = I[v,1] and v is an integer > 4 then J[2v,1] =
I[2v,1].
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Proof. From equation (3), the missing data are the set {0,1,2,...,2v —
1}. By using constructions 1 and 2, we can embed an EDTS(v,1) in an
EDTS(2v,1). By replacing an EDTS(v,1) and interchanging all (all but one)
vertices of V; corresponding to different 1-factors or spanning cycles to form
different transitive triples or lollipops, we obtain J[2v,1] 2 J[v,1] + {0,v}.
Since and J[v, 1] = I[v,1], we have J[2v,1]) 2 {0,1,2,...,by,1 — 2,bu,1} +
{vyv+1L,v+2,...,04+by1 — 2,0+ by1}.
In order to solve the missing data, we have to estimate the smallest v
satisfying
—-1<v+b,1 -2 (4)
”Sbv.l—lsv+bv,l-2 (5)

which is equivalent to the system

2-3v-1 >
v 2 1

The smallest positive integer v satisfied the above system is 4. Therefore,
we have J[2v,1] = I[2v,1], for v > 44

Lemma 4.2 If J[v,1] = I[v,1] and v is an integer > 5 then J[2v+3,1] =
I2v +3,1].

Proof. By the same method as Lemma 4.1, we obtain J[2v + 3,1] 2
J[v, 1} + {0,v + 3}. This implies that J[2v,1] 2 {0,1,2,...,by,1 — 2,by1}+
{v+3,v+4,v+5,...,v+by1 +1,v+byy +3}.
In order to solve the missing data, we have to estimate the smallest v
satisfying
20+2<v+by1 +1 (6)
v+3<by1 —1<v+by1+1 (7)

which is equivalent to the system
v2-3v—-1 0
v2—-3v-10 0
2

v

WVIVIV

The smallest positive integer v satisfied the above system is 5. Therefore,
we have J(2v + 3,1] = I{2v + 3,1], for v > 5.

Lemma 4.8 J[v,1] = I[v,1], forv= 4, 5, 7, 11.
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Proof. For v =4, let T = {[1,1,1],(2,1,2],(3,2,3],[4,2,4],[1,3,4], 4,3,
1]}. Now, N comes from T; by removing the blocks {[1,1,1],[2,1,2],[1,3,
4],[4,3, 1]} and replacing them with {[2,2, 2], [1,2, 1], [1, 4, 3], [3, 4, 1]}. From
|T1 N N1| = 2, IT] n (12)T1! =0, |T1 N (23)T1| =1, |T1 N (14)T1| = 3 and
[T1 N (34)T1| = 4, we have J[4,1] = I[4,1].

For v =35, let Ty = {[4,4,4], [1,4,1], [2,3,5]} U 4, where A = {[3,4,2],
2,1,2), 3,1,3}, [5,2,4], 5,1,5), [4,5,3]}. Now, N; comes from T} by re-
moving the blocks A and replacing them with {[2,4,2], (3,4,3], [5,4,5],
[11 5, 3], [3’ 2’ 1]) [5: 172]} By ITl n (12)(45)Tll =0, lTl n (12)(35)Tl| =1,
|T1 N (45)T1| = 2, |Ty N N1| = 3 and [T} N (234)T| = 4, we have J[5,1] =
I(5,1).

Forv =7 let T = {[1,1,1}, (2,1,2], [3,2,3], [4,2,4], [5,2,5), [6,3,6],
[7’4’7], [1’377]’ [374’1}’ [1’6’4]’ [6’5’ 1]’ [7) 115], [2,6T7]’ [7,6’2]’ [4’3)5]7
[5,7,3], [5,4,6]}. From Table 3, we obtain J[7,1] = I[7,1].

Table 3
Intersection Size Intersection Size
TN (12)(45)(67)T1 | O Ty N (467)T) 4
T1 N (23)(67)T 1 | Tin(45)(67)Ty 5
Tin (23)(57)T1 2 Tin (47)T1 6
Ty N (46)(57)T 3

For v =11, Using a similar argument to Lemma 4.2, we obtain J[11,1] =
I111,1}\ {5}. Let Ty = {[9,9,9], [1,5,1], [2,11,2], [3,8,3], [4,7,4], [5,6,5),
[6,4,86], (7,10,7], [8,2,8], [10,1, 10}, [11,3,11], [1,2,7], [7,2,1], [1,3,4], 4,3,
1], [1,8,11}, [11,8,1], [1,9,6), [6,9,1], [2,3,6], [6,3,2], [2,4,10], [10,4,2],
(2,5,9], [9,5,2], [3,5,10], [10,5, 3], 3,7,9], [9, 7, 3], [4,5,8], (8,5, 4], [4,9,11],
11,9,4], [11,7,5], [5,7,11], [6,7,8), [8,7,6], [6,10,11], [11,10,6], [8,9,10],
(10,9,8]}. Then J[11,1] = I[11,1] follows by |T1 N (56)(78)(9¢,)T| = 5,
where t; = 113

Combining the above Lemmas 4.1, 4.2 and 4.3, we obtained the following
results:

Theorem 4.4 J[v,1] = I[v,1], for v# 0 (mod 3).

5 Conclusions.
From Theorems 3.4 and 4.4, we obtained the following results:

Main Theorem J[v,0] = Ifv,0], for v = 0 (mod 3) and v $# 3, and
Jv,1] = I[v, 1], for v £ 0 (mod 3) .
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