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Abstract

In this paper connected graphs with the largest Laplacian eigen-
value at most i"'—zﬂ are characterized. Moreover, we prove that

these graphs are determined by their Laplacian spectrum.
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1. Introduction

Let G be a finite simple graph with n vertices, m edges and the adja-
cency matrix A(G). Let D(G) be the diagonal matrix of vertex degrees.
The matrix L(G) = D(G) — A(G) is called the Laplacian matriz of G.
Since A(G) and L(G) are real symmetric matrices, their eigenvalues are
real numbers. So we can assume that p; > pg > --- > u, are the Laplacian
eigenvalues (L-eigenvalues, for short) of G. The multiset of the eigenvalues
of L(G) are called the Laplacian spectrum (L-spectrum, for short) of G. We
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denote the characteristic polynomials of Laplacian and adjacency matrices
of G by Qg (A) and xg()), respectively.

There have been some attempts to characterize graphs having small
number of L-eigenvalues exceeding a given value (see[2, 3]). In [6], Petro-
vic et al. consider a connected bipartite graph G with exactly two L-
eigenvalues greater than two, and determined all those graphs. In [9],
graphs with fourth L-eigenvalue less than two are characterized. More-
over connected bipartite graphs whose the third largest L-eigenvalue is less
than three have been identified by Zhang [10]. Recently, all graphs with
the largest L-eigenvalue at most 4 are characterized [5]. In this paper we
identify all graphs with the largest L-eigenvalue at most =”—"32@

A graph is said to be determined (DS for short) by its L-spectrum if
there is no other non-isomorphic graph with the same L-spectrum. Since
the problem of characterizing DS graphs seems to be very difficult, finding
any new infinite family of these graphs will be an interesting problem (see(7,
8]). Using the characterization of graphs with the largest L-eigenvalue
at most iﬂ,‘,@, we show that these graphs are DS with respect to the
Laplacian matrix.

2. Graphs with the largest L-eigenvalue at most 5—"32@

All connected graphs with the largest L-eigenvalue at most 4 are iden-
tified. In this section we determine connected graphs with the largest L-
eigenvalue in the interval (4, 5—"32@] So the characterization of graphs with
the largest L-eigenvalue at most 2'320_—3. will be completed.

Theorem 1.[5] The list of all connected graphs with the largest L-eigenvalue
at most 4 includes precisely the following graphs: Pp,Cn(n > 3), K13, K4, Hy
and Hy. Where Hy and H; are obtained from K4 by deleting one edge and

two adjacent edges, respectively.

Lemma 1./2] Let G be a connected graph, and let H be a proper subgraph
of G. Then py(H) < m(G).

Lemma 2.[1, page 59/ Let G be the graph obtained from the disjoint union
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Hy, + Hy by adding an edge vivy joining the vertez vy of Hy and vy of
Hy, then xc () = xa, (A)xH, (A) = X(#, —01) (A X(#z—vy) (A), where H; — v;
denotes the graph obtained from H; by deleting the vertez v; and the edges
incident to it (i = 1,2).

Lemma 3. Let G be a connected graph of type Ty with n > 9 vertices (See
Fig. 2) and let x and y be the vertices of degree 3 of G. Then

Qc(A) = (-1)*(xa(2 = ) + 2x6-2(2 = A) + XG-z-y(2 — N)).

Proof. Let P be the matrix of size n x n where p1; = ps2 =1 and p;; =0,
otherwise. It is easy to see that for each matrix A of size n x n, we have:

det(P + A) = det(A) + det(B) + det(C) + det(E) (1)

where B and C are of sizesn — 1 x n — 1 and n — 2 x n — 2, respectively,
and they can be obtained by deleting the first row and the first column of
A and B, respectively. The matrix E is of size n — 1 x n — 1 and it can
be obtained by deleting the second row and the second column of A. Now
let A be the adjacency matrix of G. Without any loss of generality we can
assume that v; = z and vy = y are the vertices of degree 3 of G. So Qg()\) =
det(Al,—D+A) = det(—P+(A—-2)I,+ A) = (—1)"(det(P+(2—-A) I, —A)).
Since two graphs G — v; and G — v, are isomorphic they have the same
A-characteristic polynomials. On the other hand the adjacency matrices of
G —v; and G — v; — v can be obtained by deleting the first row and the
first column of A and the adjacency matrix of G — v, respectively. The
adjacency matrix of G — vy can be obtained by deleting the second row and
the second column of A. Hence by (1) we have;

Qc(A) = (-1)*(xc(2 = A) + 2x6-2(2 — A) + XG—z—-4(2 = A)).
0

Lemma 4. Let G be a connected graph of type T) with at least 9 vertices
(See Fig. 2). Then p,(G) < 548,

Proof. Let A =2 — y and let = and y be the vertices of degree 3 of G.
By Lemma 3, we have Qg(k) = (-1)"(xc(}) + 2x6-2(}) + Xc-z-y(}))-
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Proof. Since (K 4) = 5, by Lemma 1, the maximum degree of G is
at most 3. The computer package newGRAPH [4], can be used to find
eigenvalues. By newGRAPH, we have 11(T(2,2,2)) > u1(7(1,2,3)) >
p1(T(1,2,2)) = .5;*-.%@ So by Lemma 1, G does not have T(1,2,3) or
T(2,2,2) as subgraphs. Moreover by newGRAPH we can see that every
graph on 7 vertices with T°(1,2,2) as a proper subgraph has largest L-
eigenvalue greater than 5—"52@ So if G has at least 7 vertices, then G does
not have T'(1,2, 2) as a proper subgraph. By the previously facts and using
Lemma 1, G does not have C, for n > 7 as a proper subgraph and if G has
at least 7 vertices, then G does not have Cg as a proper subgraph. Again by
newGRAPH we can see that if G has 6 vertices, then G does not have Cg
as a proper subgraph. Moreover using newGRAPH, 4,(Tp) > ibz@ and
so by Theorem 1 and Lemma 1, G does not have C; as a proper subgraph.

To

Fig. 1

It is an easy task to see that the only graph G on 6 vertices with Cs
as a subgraph is T3 and p;(T3) = i‘t,i,@: Since each graph G with at least
7 vertices does not have T'(1,2,2) as a proper subgraph, G has Cs as a
subgraph if and only if G is of type T3. On the other hand u;(C,) < 4, so
G is not a cycle. Hence if G # Tg, then G does not have C,, forn > 3 as a
subgraph. O

Theorem 2. The list of all connected graphs with the largest L-eigenvalue

in the interval (4, ﬁﬂz@] includes precisely the following graphs: T for
t=1,23andn2>9,T; fori=4,5 andn > 5 and T} fori=6,7,8,9.
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Proof. Using newGRAPH, we can see that the largest L-eigenvalue of
each T; for 6 < i < 9 is in the interval (4, ﬁ%@] On the other hand by
Theorem 1 and Lemmas 1 and 4, the largest L-eigenvalue of each T; for
1< i < 5is in the interval (4, -—'ﬂC] Hence all mentioned graphs in this
theorem have largest L-eigenvalue in the interval (4, _:bC] Now let G be
a connected graph with the largest L-eigenvalue in the interval (4, —'bC]

We show that G is one of the previously mentioned graphs. By Lemma 5,
if G # Tg, then G does not have C, for n > 3 as a subgraph. Again using
newGRAPH and this fact that the graph G on n > 7 vertices does not have
T(1,2,2) as a proper subgraph, G has at most 2 vertices of degree 3 and so
G has at most 2 subgraph of type C3. Moreover by newGRAPH, we have
m(L(T(2,2,3)) > i (L(T(1,2,3)) > p(Ts) = pua(T7) = 2B and 50 G
does not have Ty as a proper subgraph. By newGRAPH, we can see that
if G has Tg as a proper subgraph, then G is of type T7. Therefore if G has
two C3 as a subgraph, then G must be of type T. If G has one C3 as a
subgraph, then G must be of type T; for i € {2,4,6,7}. If G does not have
C; as a proper subgraph, then by Lemma 5, G is either of type T3 or a
tree. Now let G be a tree. If G has 2 vertices of degree 3, then G must be
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of type T3. If G has one vertex of degree 3, then G must be of type Ty or
Tp. Finally using newGRAPH, we can see that each graph T; with n < 9
vertices for ¢ = 1,2,3 and each graph T; with n < 5 vertices for i = 4,5
does not have the largest L-eigenvalue in the interval (4, &%@] O

3. Spectral characterization of connected graphs with
the largest L-eigenvalue at most Y13

Two graphs are said to be L-cospectral if they have the same L-spectrum.
In this section, we show that each connected graph with the largestL-
eigenvalue at most 5—"32,@ is determined by its L-spectrum.

Lemma 6./5] Any connected graph with the largest L-eigenvalue at most 4
is determined by its L-spectrum.

Lemma 7.[7] Let G be a graph. The following can be obtained from adja-
cency (respectively, Laplacian) spectrum:

i) The number of vertices,

ii) The number of edges.

The L-spectrum determines:

iii) The number of components,

iv) The sum of squares of degrees of vertices.

Theorem 3. Each connected graph with the largest L-eigenvalue at most
iﬂ%@ is determined by its L-spectrum.

Proof. Using Lemma 6, it is sufficient to show that each connected graph
with the largest L-eigenvalue in the interval (4, &2@] is determined by its
L-spectrum. Now let G be a connected graph with the largest L-eigenvalue
in the interval (4, 5—"32@] and let H be L-cospectral to G. By (iii) of Lemma
7, H is a connected graph with the largest L-eigenvalue in the interval
(4, iﬂz@] If G is of type Tp, then by (i) and (ii) of Lemma 7, H and
G have the same number of vertices and edges. So H is of type T} for
i € {2,4,6,7}. Again by (iv) of Lemma 7, the sum of squares of degrees
of vertices are equal for H and G. So H is of type T; for ¢ € {2,6,}. By
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newGRAPH, we can see that Tg is not cospectral to the other graph with 5
vertices. Hence H is of type T», and so H and G are isomorphic. Moreover
it is easy to see that Tg and Ty are determined by their L-spectrum. Now
let G be of type T; for i € {1,3,4,5,7}, then by (i) and (ii) of Lemma 7,
H and G have the same number of vertices and edges. Again by (iv) of
Lemma 7, the sum of squares of degrees of vertices of H and G are equal.
Therefore H must be of type T; and so they are isomorphic. 0
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