The characterization of graphs with the largest Laplacian eigenvalue at

$$\mathbf{most} \,\, \tfrac{5+\sqrt{13}}{2}$$

G. R. Omidi 1

Department of Mathematical Sciences, Isfahan University of Technology,

Isfahan, 84156-83111, Iran

School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

P.O.Box:19395-5746, Tehran, Iran E-mail: romidi@cc.iut.ac.ir

Abstract

In this paper connected graphs with the largest Laplacian eigenvalue at most $\frac{5+\sqrt{13}}{2}$ are characterized. Moreover, we prove that these graphs are determined by their Laplacian spectrum.

Keywords: Spectra of graphs; Laplacian matrix; Cospectral graphs. AMS subject classification: 05C50.

1. Introduction

Let G be a finite simple graph with n vertices, m edges and the adjacency matrix A(G). Let D(G) be the diagonal matrix of vertex degrees. The matrix L(G) = D(G) - A(G) is called the Laplacian matrix of G. Since A(G) and L(G) are real symmetric matrices, their eigenvalues are real numbers. So we can assume that $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are the Laplacian eigenvalues (L-eigenvalues, for short) of G. The multiset of the eigenvalues of L(G) are called the Laplacian spectrum (L-spectrum, for short) of G. We

¹This research was in part supported by a grant from IPM (No.87050016)

denote the characteristic polynomials of Laplacian and adjacency matrices of G by $Q_G(\lambda)$ and $\chi_G(\lambda)$, respectively.

There have been some attempts to characterize graphs having small number of L-eigenvalues exceeding a given value (see[2, 3]). In [6], Petrovic et al. consider a connected bipartite graph G with exactly two L-eigenvalues greater than two, and determined all those graphs. In [9], graphs with fourth L-eigenvalue less than two are characterized. Moreover connected bipartite graphs whose the third largest L-eigenvalue is less than three have been identified by Zhang [10]. Recently, all graphs with the largest L-eigenvalue at most 4 are characterized [5]. In this paper we identify all graphs with the largest L-eigenvalue at most $\frac{5+\sqrt{13}}{2}$.

A graph is said to be determined (DS for short) by its L-spectrum if there is no other non-isomorphic graph with the same L-spectrum. Since the problem of characterizing DS graphs seems to be very difficult, finding any new infinite family of these graphs will be an interesting problem (see[7, 8]). Using the characterization of graphs with the largest L-eigenvalue at most $\frac{5+\sqrt{13}}{2}$, we show that these graphs are DS with respect to the Laplacian matrix.

2. Graphs with the largest L-eigenvalue at most $\frac{5+\sqrt{13}}{2}$

All connected graphs with the largest L-eigenvalue at most 4 are identified. In this section we determine connected graphs with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$. So the characterization of graphs with the largest L-eigenvalue at most $\frac{5+\sqrt{13}}{2}$ will be completed.

Theorem 1.[5] The list of all connected graphs with the largest L-eigenvalue at most 4 includes precisely the following graphs: P_n , C_n ($n \ge 3$), $K_{1,3}$, K_4 , H_1 and H_2 . Where H_2 and H_1 are obtained from K_4 by deleting one edge and two adjacent edges, respectively.

Lemma 1.[2] Let G be a connected graph, and let H be a proper subgraph of G. Then $\mu_1(H) \leq \mu_1(G)$.

Lemma 2.[1, page 59] Let G be the graph obtained from the disjoint union

 $H_1 + H_2$ by adding an edge v_1v_2 joining the vertex v_1 of H_1 and v_2 of H_2 , then $\chi_G(\lambda) = \chi_{H_1}(\lambda)\chi_{H_2}(\lambda) - \chi_{(H_1-v_1)}(\lambda)\chi_{(H_2-v_2)}(\lambda)$, where $H_i - v_i$ denotes the graph obtained from H_i by deleting the vertex v_i and the edges incident to it (i = 1, 2).

Lemma 3. Let G be a connected graph of type T_1 with $n \geq 9$ vertices (See Fig. 2) and let x and y be the vertices of degree 3 of G. Then

$$Q_G(\lambda) = (-1)^n (\chi_G(2-\lambda) + 2\chi_{G-x}(2-\lambda) + \chi_{G-x-y}(2-\lambda)).$$

Proof. Let P be the matrix of size $n \times n$ where $p_{11} = p_{22} = 1$ and $p_{ij} = 0$, otherwise. It is easy to see that for each matrix A of size $n \times n$, we have:

$$\det(P+A) = \det(A) + \det(B) + \det(C) + \det(E) \tag{1}$$

where B and C are of sizes $n-1\times n-1$ and $n-2\times n-2$, respectively, and they can be obtained by deleting the first row and the first column of A and B, respectively. The matrix E is of size $n-1\times n-1$ and it can be obtained by deleting the second row and the second column of A. Now let A be the adjacency matrix of G. Without any loss of generality we can assume that $v_1=x$ and $v_2=y$ are the vertices of degree 3 of G. So $Q_G(\lambda)=\det(\lambda I_n-D+A)=\det(-P+(\lambda-2)I_n+A)=(-1)^n(\det(P+(2-\lambda)I_n-A))$. Since two graphs $G-v_1$ and $G-v_2$ are isomorphic they have the same A-characteristic polynomials. On the other hand the adjacency matrices of $G-v_1$ and $G-v_1-v_2$ can be obtained by deleting the first row and the first column of A and the adjacency matrix of $G-v_1$, respectively. The adjacency matrix of $G-v_2$ can be obtained by deleting the second row and the second column of A. Hence by (1) we have:

$$Q_G(\lambda) = (-1)^n (\chi_G(2-\lambda) + 2\chi_{G-x}(2-\lambda) + \chi_{G-x-y}(2-\lambda)).$$

Lemma 4. Let G be a connected graph of type T_1 with at least 9 vertices (See Fig. 2). Then $\mu_1(G) \leq \frac{5+\sqrt{13}}{2}$.

Proof. Let $\lambda = 2 - \mu$ and let x and y be the vertices of degree 3 of G. By Lemma 3, we have $Q_G(\mu) = (-1)^n (\chi_G(\lambda) + 2\chi_{G-x}(\lambda) + \chi_{G-x-y}(\lambda))$.

Let P_i be the path on I vertices. Using Lemma 2, we have:

$$\chi_{G}(\lambda) = (\lambda + 1)^{2}(\lambda - 2)(\lambda(\lambda + 1)^{2}(\lambda - 2) - 2(\lambda^{2} - 1)\chi_{n-1} + (\lambda + 1)^{2}(\lambda - 2) - 2(\lambda^{2} - 1)\chi_{n-1}),$$

$$\chi_{G-x-y}(\lambda) = (\lambda^{2} - 1)((\lambda + 1)(\lambda^{3} - \lambda^{2} - 3\lambda + 1)\chi_{n-1} - (\lambda - 2)(\lambda + 1)^{2}\chi_{p_{n-1}},$$

$$\chi_{G-x-y}(\lambda) = (\lambda^{2} - 1)^{2}\chi_{p_{n-6}} = \lambda(\lambda^{2} - 1)^{2}\chi_{p_{n-7}} - (\lambda^{2} - 1)^{2}\chi_{p_{n-8}},$$

Therefore:

$$Q_{G}(\mu) = (-1)^{n}(\lambda + 1)^{2}(((\lambda + 1)(\lambda - 2)(\lambda^{3} - \lambda^{2} - 4\lambda + 2) + (\lambda - 1)(2\lambda^{3} - \lambda^{2} - 4\lambda + 2) + (\lambda - 1)(2\lambda^{3} - \lambda^{2} - 7\lambda + 2))\chi_{p_{n-2}}(\lambda) - (\lambda - 2)(\lambda^{3} + 2\lambda^{2} - 3\lambda - 4)\chi_{p_{n-8}}(\lambda)).$$
Moreover for $l > 2$ we have $\chi_{P_{l}}(\lambda) = \lambda\chi_{P_{l-1}}(\lambda) - \chi_{P_{l-2}}(\lambda)$. Hence $Q_{G}(\mu) = (-1)^{n}(\lambda + 1)^{2}((\lambda\varphi(\lambda) - \psi(\lambda))\chi_{p_{n-9}}(\lambda) - \varphi(\lambda)\chi_{p_{n-10}}(\lambda))$ where
$$\varphi(\lambda) = \lambda((\lambda - 2)(\lambda + 1)(\lambda^{3} - \lambda^{2} - 4\lambda + 2) + (\lambda - 1)(2\lambda^{3} - \lambda^{2} - 7\lambda + 2))$$

$$-(\lambda - 2)(\lambda^{3} + 2\lambda^{2} - 3\lambda - 4)$$

$$-(\lambda - 2)(\lambda^{3} + 2\lambda^{2} - 3\lambda - 4)$$

and

On the other hand
$$\chi_{P_2}(\lambda) = \lambda^2 - 1$$
 and $\chi_{P_i}(\lambda) = \lambda \chi_{P_{i-1}}(\lambda) - \chi_{P_{i-2}}(\lambda)$. So we can see that $(-1)^i \chi_{P_i}(\lambda) > 0$ and $|\chi_{P_i}(\lambda)| > |\chi_{P_{i-1}}(\lambda)|$ for $\lambda \leq -\frac{3+\sqrt{13}}{2}$. It is an easy task to see that $(\lambda \varphi(\lambda) - \psi(\lambda)) < 0$ and $\varphi(\lambda) < 0$ or $|(\lambda \varphi(\lambda) - \psi(\lambda))| > |\varphi(\lambda)|$ for $\lambda < -\frac{3+\sqrt{13}}{2}$. Therefore if $n > 10$, then for each $\mu > \frac{5+\sqrt{13}}{2}$, we have $Q_G(\mu) > 0$ and so $\mu_1(G) < \frac{5+\sqrt{13}}{2}$. Moreover for each $\mu > \frac{5+\sqrt{13}}{2}$, we have $Q_G(\mu) > 0$ and so $\mu_1(G) < \frac{5+\sqrt{13}}{2}$.

 $\psi(\lambda) = (\lambda + 1)(\lambda - 2)(\lambda^3 - \lambda^2 - 4\lambda + 2) + (\lambda - 1)(2\lambda^3 - \lambda^2 - 7\lambda + 2).$

it is an easy task to see that for $n=9,10, \mu_1(G) \le \frac{5+\sqrt{13}}{2}$.

A tree is called T-shape if it has exactly one vertex of degree greater than two and the degree of this vertex is 3. We will denote by $T(l_1, l_2, l_3)$ the unique T-shape tree such that $T(l_1, l_2, l_3) - v = P_{l_1} \cup P_{l_2} \cup P_{l_3}$, where P_{l_i} is the path on l_i vertices (i = 1, 2, 3), and v is the vertex of degree 3.

Lemma 5. Let $G \neq T_8$ be a connected graph with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$. Then G does not have C_n for $n \geq 4$ as a subgraph

Proof. Since $\mu_1(K_{1,4})=5$, by Lemma 1, the maximum degree of G is at most 3. The computer package newGRAPH [4], can be used to find eigenvalues. By newGRAPH, we have $\mu_1(T(2,2,2))>\mu_1(T(1,2,3))>\mu_1(T(1,2,2))=\frac{5+\sqrt{13}}{2}$. So by Lemma 1, G does not have T(1,2,3) or T(2,2,2) as subgraphs. Moreover by newGRAPH we can see that every graph on 7 vertices with T(1,2,2) as a proper subgraph has largest L-eigenvalue greater than $\frac{5+\sqrt{13}}{2}$. So if G has at least 7 vertices, then G does not have T(1,2,2) as a proper subgraph. By the previously facts and using Lemma 1, G does not have G for G as a proper subgraph and if G has at least 7 vertices, then G does not have G as a proper subgraph. Again by newGRAPH we can see that if G has 6 vertices, then G does not have G as a proper subgraph. Moreover using newGRAPH, H as a proper subgraph.

Fig. 1

It is an easy task to see that the only graph G on 6 vertices with C_5 as a subgraph is T_8 and $\mu_1(T_8) = \frac{5+\sqrt{13}}{2}$. Since each graph G with at least 7 vertices does not have T(1,2,2) as a proper subgraph, G has C_5 as a subgraph if and only if G is of type T_8 . On the other hand $\mu_1(C_n) \leq 4$, so G is not a cycle. Hence if $G \neq T_8$, then G does not have C_n for n > 3 as a subgraph.

Theorem 2. The list of all connected graphs with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$ includes precisely the following graphs: T_i for i = 1, 2, 3 and $n \geq 9$, T_i for i = 4, 5 and $n \geq 5$ and T_i for i = 6, 7, 8, 9.

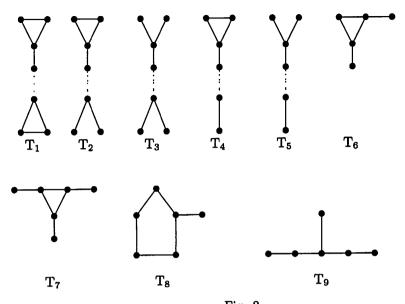


Fig. 2

Using newGRAPH, we can see that the largest L-eigenvalue of each T_i for $6 \le i \le 9$ is in the interval $(4, \frac{5+\sqrt{13}}{2}]$. On the other hand by Theorem 1 and Lemmas 1 and 4, the largest L-eigenvalue of each T_i for $1 \le i \le 5$ is in the interval $(4, \frac{5+\sqrt{13}}{2}]$. Hence all mentioned graphs in this theorem have largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$. Now let G be a connected graph with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$. We show that G is one of the previously mentioned graphs. By Lemma 5, if $G \neq T_8$, then G does not have C_n for n > 3 as a subgraph. Again using newGRAPH and this fact that the graph G on $n \geq 7$ vertices does not have T(1,2,2) as a proper subgraph, G has at most 2 vertices of degree 3 and so G has at most 2 subgraph of type C_3 . Moreover by newGRAPH, we have $\mu_1(L(T(2,2,3)) > \mu_1(L(T(1,2,3)) > \mu_1(T_6) = \mu_1(T_7) = \frac{5+\sqrt{13}}{2}$ and so Gdoes not have T_7 as a proper subgraph. By newGRAPH, we can see that if G has T_6 as a proper subgraph, then G is of type T_7 . Therefore if G has two C_3 as a subgraph, then G must be of type T_1 . If G has one C_3 as a subgraph, then G must be of type T_i for $i \in \{2,4,6,7\}$. If G does not have C_3 as a proper subgraph, then by Lemma 5, G is either of type T_8 or a tree. Now let G be a tree. If G has 2 vertices of degree 3, then G must be of type T_3 . If G has one vertex of degree 3, then G must be of type T_5 or T_9 . Finally using newGRAPH, we can see that each graph T_i with n < 9 vertices for i = 1, 2, 3 and each graph T_i with n < 5 vertices for i = 4, 5 does not have the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$.

3. Spectral characterization of connected graphs with the largest *L*-eigenvalue at most $\frac{5+\sqrt{13}}{2}$

Two graphs are said to be *L*-cospectral if they have the same *L*-spectrum. In this section, we show that each connected graph with the largest *L*-eigenvalue at most $\frac{5+\sqrt{13}}{2}$ is determined by its *L*-spectrum.

Lemma 6.[5] Any connected graph with the largest L-eigenvalue at most 4 is determined by its L-spectrum.

Lemma 7.[7] Let G be a graph. The following can be obtained from adjacency (respectively, Laplacian) spectrum:

- i) The number of vertices,
- ii) The number of edges.

The L-spectrum determines:

- iii) The number of components,
- iv) The sum of squares of degrees of vertices.

Theorem 3. Each connected graph with the largest L-eigenvalue at most $\frac{5+\sqrt{13}}{2}$ is determined by its L-spectrum.

Proof. Using Lemma 6, it is sufficient to show that each connected graph with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$ is determined by its L-spectrum. Now let G be a connected graph with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$ and let H be L-cospectral to G. By (iii) of Lemma 7, H is a connected graph with the largest L-eigenvalue in the interval $(4, \frac{5+\sqrt{13}}{2}]$. If G is of type T_2 , then by (i) and (ii) of Lemma 7, H and G have the same number of vertices and edges. So H is of type T_i for $i \in \{2, 4, 6, 7\}$. Again by (iv) of Lemma 7, the sum of squares of degrees of vertices are equal for H and G. So H is of type T_i for $i \in \{2, 6, \}$. By

newGRAPH, we can see that T_6 is not cospectral to the other graph with 5 vertices. Hence H is of type T_2 , and so H and G are isomorphic. Moreover it is easy to see that T_8 and T_9 are determined by their L-spectrum. Now let G be of type T_i for $i \in \{1, 3, 4, 5, 7\}$, then by (i) and (ii) of Lemma 7, H and G have the same number of vertices and edges. Again by (iv) of Lemma 7, the sum of squares of degrees of vertices of H and G are equal. Therefore H must be of type T_i and so they are isomorphic.

References

- D. M. CVETKOVIC, M. DOOB AND H. SACHS, Spectra of Graphs. Third edition, Johann Abrosius Barth Verlag, 1995.
- [2] R. GRONE, R. MERRIS AND V. S. SUNDER, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
- [3] R. MERRIS, The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Portugal. Math. 48 (1991) 345-349.
- [4] newGRAPH. Available from: http://www.mi.sanu.ac.yu/newgraph.
- [5] G. R. OMIDI, The characterization of graphs with the largest Laplacian eigenvalue at most 4, Australas. J. Combin. 44 (2009) 163-170.
- [6] M. PETROVIC, I. GUTMAN AND M. LEPOVIC, On bipartite graphs with small number of Laplacian eigenvalues greater than two and three, Linear Multilinear Algebra 47 (2000) 205-215.
- [7] E. R. VAN DAM AND W. H. HAEMERS, Which graphs are determined by its spectrum?, Linear Algebra Appl. 373 (2003) 241–272.
- [8] E. R. VAN DAM AND W. H. HAEMERS, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576-586.
- [9] X. Zhang, Graphs with fourth Laplacian eigenvalue less than two, European J. Combin. 24 (2003) 617-630.
- [10] X. Zhang, Bipartite graphs with small third Laplacian eigenvalue, Discrete Math. 278 (2004) 241–253.