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Abstract

A graph G = (V, E) is a mod sum graph if there exists a positive inte-
ger z and a labelling, A, of the vertices of G with distinct elements from
{1,2,...,2 — 1} so that uv € E if and only if the sum, modulo z, of the
labels assigned to u and v is the label of a vertex of G. The mod sum
number p(G) of a connected graph G is the smallest nonnegative m such
that GUmMK(, the union of G and m isolated vertices, is a mod sum graph.
In section 2, we prove that fan(F,) is not a mod sum graph and give the
mod sum number of F,, (n > 6 is even). In section 3 we give the mod sum
number of symmetric complete graph.
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1. Introduction

All graphs in this paper are finite with no loops or multiple edges.
We follow in general the graph-theoretic notation and terminology
of [3] unless otherwise specified.

Harary [2] introduced the idea of sum graphs and integral sum
graphs. At first, let N denote the set of positive integers. The sum
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graph G*(S) of a finite subset S C N is the graph (S, E) withuv € E
if and only if u +v € S. A graph G is said to be a sum graph if it
is isomorphic to the sum graph of some S C N. It is obvious that a
sum graph cannot be connected. There must always be at least one
isolated vertex, namely the vertex with the highest label. The sum
number ¢(G) of a connected graph G is the smallest nonnegative m
such that GUmK, the union of G and m isolated vertices, is a sum
graph.

Mod sum graph was introduced by Bolland, Laskar, Turner and
Domke [1] as a generalization of sum graph. A graph G = (V, E) is
a mod sum graph if there exists a positive integer z and a labelling,
), of the vertices of G with distinct elements from {1,2,...,2—1} so
that uv € E if and only if the sum, modulo 2, of the labels assigned
to u and v is the label of a vertex of G. The mod sum number
p(G) of a connected graph G is the smallest nonnegative m such
that G UmK], the union of G and m isolated vertices, is a mod sum
graph. Any sum graph can be considered as a mod sum graph by
choosing a sufficiently large modulus z. The converse is not true.
Thus we have p(G) < o(G).

A fan F,, is a graph G = (V, E) with a vertex set V = {v;, v1, 2, ...

such that vov; € Efori=1,2,...,n, vy € Efori=1,2,...,n—
1. The vertex v, is called center, and the other n vertices v1,vg,...,vn
are called the rim vertices. An edge incident on the center and a rim
vertex is called a spoke, and an edge incident on two rim vertices is
called a rim edge.

Although some results on mod sum graphs were solved, a consid-
erable number of unsolved problems remain. In section 2 we prove
that fan(Fy,) is not a mod sum graph and give the mod sum number
of F, (n > 6 is even) that is a open problem in [4]. In section 3
we give the mod sum number of symmetric complete bipartite graph
that is a open problem in [5]. Both problems have a research his-
tory. Draganova [6) has shown that for n > 5 and n odd, p(Fy) = n.
Sutton, Miller, Ryan and Slamin [5] showed that for n > 3, Knpn
is not mod sum graph. Wallace [7] also proved that Ky, is mod
sum graph when n is even and n > 2m or when n is odd and that
p(Kmn) =m when 3 <m <n<2m.

To simplify notations, throughout this paper, we assume that the



vertices of G are already identified by their labels.

2. Fans

It is easy to verify that Fb, F3 and Fy are not mod sum graphs.
Next we prove that Fy, is not a mod sum graph when n > 5. In this
section we let v, be the center and {v1,v2,...,v,} be the rim vertices
of F,,. We shall use the term edge sum,written as [a, b] to mean the
sum of the labels of the two vertices incident on the edge so that
[a,b] € V is the same as a + b € V (Since all arithmetic is performed
modulo m, strictly speaking we should say a + b mod m € V, m is
some suitable modulo). We suppose F,, is a mod sum graph modulo
some suitable m. Thus there are some properties of F,.

Property 1. {v1,v2,...,vn} ={vc+v1,09.+vo,...,v.+vs}. O

Property 2. The labels of the rim vertices can be partitioned into
sets of equal size t such that the elements of each set from a t-cycle
under addition of v..

By Property 1, we may achieve the following manner. Select the
smallest(mod m)label of V, say v;, remove it from V and place it as
the first label of a new set representing the first partition. There must
exist a rim vertex v; with a label equal to v;+v.. So remove this label
from the set V' and place in the first partition. Repeat the process
until no label in the series can not be found in V. This completes the
selection of the first partition set. If there are labels still remaining
in V, then the process is repeated for a second partition set until the
required label is not found in V. It is easy to verify that the labels
from the first partition set differ the label from the second partition
set. This completes the second partition set.

Repeat the selection process until no label in V. Since the con-
secutive elements of each cycle differ by same quantity v.. It is

obvious that all cycles must be the same size, that is, v; + v, = Vit1,
i=1,2,...,t —1 and v; + v, = v; where t is the size of the sets. O
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In this section, we call these partition sets as t-cycles. We denote
the vertices whose labels from t-cycle C; by v;1, vi2, ..., i.

Property 3. If vijue € E, then vij + vy € V(Cy), 4,k =
{1,2,...,t},i #k.

Proof. Suppose that v;j+vix = vy for some 5, k,l = {1,2,...,t},5 #
k. So

vir + (J — Dve+vir + (k= Dve =vin + (I — 1)ve

then vi; = pv. wherep € {1,2,...,t}. Hence forsome j € {1,2,...,t}
we have v;; = v, a contradiction since all labels must be distinct. O

By Property 2 and 3, it is easy to see.
Property 4. 2<t<3. 0O

Property 5. Ifvijui € E, thenvij+vip # ve, .k = {1,2,...,t},j #
k.

Proof. Suppose that v;; + vix = vc then there is a vertex v; = 0, a
contradiction. [

Property 6. If vyvj € E, then vix + v € V(CiUC)), k1 =
{1,2,...,t}.

Proof. Suppose that vixvj € E, vix + vji = vip. Then vj; = vip —

vir = que. Thus ,there exists s € {1,2,...,t} such that vjs = v, a
contradiction. [J

Property 7. At least one t-cycle contains a pair of adjacent ver-
tices.

Proof. Suppose that all adjacent vertices have labels from different
t-cycle if vzvy; € E then z # y, V 2,y = 1,2,...,% ,and 4,5 =
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1,2,...,t. Without loss of generality, we can suppose that vi;v9; €
E. By property 6, the vertex v;v2; cannot be in C; or Cp. There
are two cases to consider.

Case 1. Suppose for adjacent vertices from cycles C; and Cs that
V1; + Vo; = v3g. If this is true for any particular pair of vertices (one
from C; and the other from C3) then it will be true for every pair of
vertices, since the labels in all t-cycles differ by an integral number
of v.. This implies that every vertex in C) is adjacent to every vertex
vertex in Cy, say vi;v9; € E, V4,5 = 1,2,...,t. This is impossible
in a fan if the rim vertex labels partition into three or more cycles.
Case 2. If v1; +vo; = v, then consider the other rim vertex adjacent
to vy; or vg;, without loss of generality, say v, is adjacent to vy; with
[vzk,v15] € E. Obviously, v1; + vz # v. since v9; # vUgk and so we
have a special example of case 1 which is impossible in a fan if the
vertex labels' partition into three of more t-cycles.

Note that there are exactly two t-cycles of labels partition. If
V1; + Uzk F Ve then vy, = vo and vy; +vo = v, , for some rim vertex
vp. This implies that one of the labels in C; is v, a contradiction. O

Property 8. The labels of the rim vertices of any mod sum labelling
of Fn can be partitioned into 2-cycle with respect to addition of v,
and vo =

FProof. Suppose t > 3. By Property 7,there exist two adjacent
vertices with labels from the same t-cycle. Without loss of generality,
we may suppose v;v1; € E. By Property 5, v1; + v1; # ve. By
Property 3, v1; + v1; # vix. So that vy; + V1j = Uzt Where = # 1,thus
the sum of every pair of the labels in C) be a label in C,. Hence
every vertex in C is adjacent to every other vertex in C; and the
vertices of C} induce a complete graph K;. This is true in fan when
t = 2. Hence v = 3 (m is modulo). O

Corollary 1. When n is odd, there at least exists one isolate
[ve,vi], 1€ {1,2,...,n}. O

Theorem 1. F, is not a mod sum graph.
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Proof. We only need to verify that F;, is not a mod sum graph when
n > 5. There are two cases to be considered.

Case 1. n is odd. By Corollary 1, we can see that F;, is not a mod
sum graph.
Case 2. n is even. Since n > 6 then suppose that C; = {v11,v12},
Ca = {va1,vo2} and va1,va2 # v1,vn, without loss of generality, sup-
pose that v1; is adjacent to g1, so that v1y +v21 = w wherew € V.

By Property 6, w is not in C; or C3. Suppose w € Cz, Cr #
Ci,C,, This implies that every vertex in C; is adjacent to every
vertex in Cs, a contradiction. So w = v, and v11 + v21 = v.. Since
v11 + Yo = vi2 and vg; + v = Uz, We also have vip + va2 = v.
By Property 7, we suppose that vg; is adjacent to v2. So that
Vo1 + Vg2 = u. Obviously u # v., because vy # v11. We now suppose
that u € Cy, Cy # C1,Co and let u = vy. Then vo; +v92 = vy1. But
we have v + ve2 = ¥, thus vy + vi2 = vi2 + v21 + vo2 = vao. So
ve + vy1 + V12 = v22 + v then vyz + vi2 = var. This implies that v
is adjacent to both vy; and vy. This is a contradiction in F;, when
n > 6.

Hence F, is not a mod sum graph. O

Lemma 1. In a mod sum graph labelling of F, U sK;, n 2>
5,5 = p(Fn); ve # vi +vit1, 6 =2,3,...,n=2), vc # Ve +v;, (2 =
1,2,...,n).

Proof. The center v, cannot be the edge sum of a spoke v.v;(i
1,2,...,n), as this would imply that v. = v + vi, so v; = 0, a
contradiction, because no vertex of the graph has a label of zero.
To show ve # vi+vi+1(i = 2,3,...,n—2), we suppose the contrary
so that v; and v+ are two adjacent rim vertices and v. = v; +
vit1. Let vi_1,vit2 be the second rim vertices adjacent to v;, vit1
respectably. So wv;_1,vi, Vi4+1,Vi+2 are four consecutive rim vertices.
The edge sum of the spoke [v¢, vi—1] = Vi1 + Vi + Vi+1, 50 Vi—1 +vi +
vi+1 must be a vertex of the graph. Since the vertex v;+1 and the rim
edge v;_1 +v; are both vertices of the graph, hence vi4+; = vi-1+v; or
[vi41, (vi—1+v;)) exists. Similarly the spoke [ve, Vita] = Vitvip1+HVig2
implied that either v; = viy1 + vig2 O [us, (vig1 + viy2)] exists.
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Allowing for symmetry, there are three cases to be considered.
Case 1. Both [v;41, (vi—1 + v;)] and [vi, (vi41 + vis2)] exist.

When [v;, (viq1 + viy2)] exists, the vertex v;y; + v;,2 must be
equal to one of the three vertices to v;. Obviously v;y; +viyo # Vi1
and viy1 + vig2 # v + vig1 so that vy + viyo = v;_1. Similarly
Vi +vim1 = vig2. S0 vim1 = Vit + Vige = Vi + (Vieg + v) =
Vit+1 + Vi-1 + v; => v; + v;41 = 0 a contradiction.

Case 2. v;41 = vi—1 +v; and v; = vy + V2.

We note that v; = viy1+vige = (Vic1+v;)+vigo = vi1+vip2
0. We write the four consecutive rim vertices and the center
Vi1, Vi + Vi-1,Vi42,20; + v;—1. The spoke [v,,v;] = v, + v;
(2v; + v;—1) + vi = 3v; + v;—1 and the spoke [ve, vita] = ve + vigo
(2vi+v;—1) +vig2 = 2v3+v;_1 +vigp2 = 2v; imply that [2v;, (v +vi-1)]
exists or 2v; = v; + v;—1. If 2u; = v; 4+ v;; then v; = v;_q, a
contradiction, hence 2v; must be one of the three vertices adjacent
to v; + vi_;. Obviously 2v; # v;,2v; + v;—y, so 2v; = v;pe. But
2v; + v;—1 implies 2v; is adjacent to v;_j, namely v;,.2 is adjacent to
v;—1, a contradiction .

Case 3. [vj, (vi+1 + vi42)] exists and v = vy + v

As in Case 1, we have v;41 + viy2 = v;—1 and note that vy =
Y + Vi—1 = V; + (Vig1 + vip2) => V; + v40 = 0. We write the four
consecutive rim vertices and the center as v;_1, v;, v;+vi—1, Viyo, 2v;+
vi—1. The spoke (v, vi—1] = (2v; + vi~1) + vi_1 = 2v; + 2v;_; and
the spoke [ve, (vi—1v:)] = (2v; +vi-1) + (vi—1 +v;) = 3v; + 2v;_; that
imply either [v;, (2v; + 2v;—1 )] exists or v; = 2v; + 2v;_;. We can see
that 2v; + 2v;_1 # 2v; + v;—; otherwise v;_; = 0, a contradiction.
Similarly we have 2v; + 2v;—; # vi—1 and 2v; + 2v;_1 # v; + vi_1.
Hence v; = 2v; + 2v;_1, so v; + 2v;_1 = 0. The spoke [v,v;] =
(2v; + v;—1) + vi = 3v; + vi—1 and the spoke [ve, (vi—1%;)] = (2v; +
vi—1) + (vi—1 + v;) = 3v; + 2v;_; that imply either [2v;, (v; + vi-1)]
exists or 2v; = v; + v;—;. We can see 2v; # v; + v;_; otherwise
v; = v;—1. Obviously 2v; # v; and 2v; # 2v; + v;_1, so 2v; = vi49.
But 2v; + v;_1 implies 2v; is adjacent to v;_;, a contradiction. O

e n

Lemma 2. In a mod sum graph labelling of F, U sKy, n >
5,8 = p(Fp); If the spoke [vc,v;) is an isolated, then v; 4+ viy1, (i =
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2,3,...,n —2) are isolated.

Proof. Suppose the contrary, if 3¢ € {2,3,...,n — 2}, the spoke
[ve, 5] is an isolate, and rim edge [vi,vi;1] is not an isolate. By
Lemma 1, v; + vi41 # ve. The spoke [ve, (v; +vit1)] = (ve+vi) +viga
implies that either [(ve + v;), vi41] exists or v + v; = vi41. Neither
case can happen since v;4] is a vertex of the fan where v. + v; is an
isolate. [J

Lemma 3. In a mod sum graph labelling of F, UsK;, n > 5,5 =
p(Ey); If the spoke [vc, vi], (i = 1,n) is an isolated vertez, then there
are at least two isolated vertives.

Proof. We only prove that if v, + v; is isolated, then there are at
least two isolates. The case of v, + v, is similar.

Suppose to the contrary that, there is a single isolate. v + v
must be a rim vertex or the center. If v; + vo is a rim vertex, then
v, must be adjacent to v; + vo. Thus v, + v1 + v2 = (vc + v1) + v2
exists. Either v, + v; = v or v, + v; is adjacent to vg, there is a
contradiction, since v, + v; is an isolate.

If v. = v1 + vo, then v, + v3 = (v1+'02)+'v3 =M +(v2+
v3). By Lemma 1, we know v; + v3 is a rim vertex. If (vg +v3) €
V — {v1,v2,v3}, without loss of generality, we suppose v2 + v3 = vy,
that implies v is adjacent to v4. This is a contradiction in fan. If
v] = v + v3, then the isolated z = 3wy + 2v3. The label of spoke
[ve,v3] = (2v2 + v3) + v3 = 2vp + 2v3 exists. Now 2vp + 2u3 # v3
otherwise 2us + vz = 0 which is not true since 2vs + v3 is a label of
graph. Similarly 2vq +2vs # v, v1(ve +v3), Ve(2v2 +v3), £(3v +2v3),
that implies v.+v3(2ve+2v3) is adjacent to ve. This is a contradiction
infan. O

By Lemma 2 and 3, it is easy to see.

Corollary 2. In a mod sum graph labelling of F,UsK;, n > 5,8 =
p(Fn); If the spoke vevi, (i = 1,2,...,n) is an isolated vertez, then
there are at least two isolated vertices.
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Lemma 4. p(F,) > 2 forn > 5.

Proof. For n > 5, F, is not a mod sum graph by theorem 1,
that is p(F,) > 1. We suppose that p(F,) = 1 and show that this
assumption leads to a contradiction. Let z be the only isolate. It is
obviously that z is not the edge sum of the spoke by Corollary 2. So
z is the edge sum one or more rim edges. When = is odd, p(F,) > 2
by Corollary 1 and Corollary 2. Thus we only consider the case n is
even.

In the following for symmetry, there are four cases to consider.
Case 1. vy +vo =z or vy + ¥p—1 = Z.

We only consider the case v; + v = z. Let v3 be the second rim
vertex that adjacent to vo. Obviously, va+v3 # = and so v +v3 must
be a rim vertex. Both the spokes (v, v2] = v.+v2 and [ve, v3] = ve+v3
exist so that the spoke v.+ (v +v3) implies that both of the following
conditions hold.

(i) Either v2 = v, + v3 or [vg, (ve + v3)] exists; and
(ii) Either vs = vc + g or [vs, (v + v2)] exists.
Subcase 1. Either vy # v, 4 v3 or v3 # v, + vo.

The rim vertices v3 + v, and vs + v, can only be adjacent when
n > 6 if both vy = v, + v3 and v3 = v, + vg so that if vy # v, + v3
and(or) vz # v, + vo then vg + v, and vz + v, are not adjacent.
The spoke [ve, (v2 + v3)] = v, + v2 + v3 must be an isolate otherwise
the spoke [vc, (ve + v2 + vs)] implies [(ve + vg), (Ve + v3)] exists. By
Corollary 2, p(Fy,) > 2 when any spoke is an isolate.

Subcase 2. v + v, = v3 and v3 + v, = va.

When v; = % the equations vz + v, = v3 and v3 + v, = vy are
both true. So v = v3+ F, v3 = va + %. Thus we have the center
ve = %, the rim vertices v, v3+ 3 (v2), v3 and the isolate v; +vz+ .
There exists a rim vertex v; + 7 that adjacent to vz by the isolate.
Since n > 5, we consider the other rim vertex e that adjacent to
v1 + 5. We retain the label e that adjacent to v; + 7. Then the
spoke [vc,e] = v. + e is a sixth distinct rim vertex that adjacent to
v; by rim edge [(v1 + §),€] = v1 + (e + §). This is a contradiction
in F, when n > 6.
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Case 2. 19+v3=2Z Or Up_1 +VUn-2=2.

We only consider the case vy + v3 = z. Let vg be the second rim
vertex that adjacent to vs. Similar to Case 1, we have the following.
(i) Either vz = v + vq or [v3, (Ve + v4)] exists; and
(ii) Either vy = v, + v3 or [v4, (vc + v3)] exists.

Subcase 1. Either v3 # v, + v4 or v4 # vc + vs.

The rim vertices v3 + v, and v4 + v, can only be adjacent when
n > 6 if both v3 = v, + v4 and v4 = v + v3 so that if vz # v+ v4
and(or) vg # v + vs then vz + v. and v4 + v are not adjacent.
The spoke [ve, (v + v4)] = vc + v3 + v4 must be an isolate otherwise
the spoke [ve, (ve + v3 + v4)] implies [(ve + v3), (ve + v4)] exists. By
Corollary 2, p(F;,) > 2 when any spoke is an isolate.

Subcase 2. vz + v, = v4 and v4 + v = V3.

Thus we have the center v, = T, the rim vertices vg, v4 + 2(v3),
vg and the isolate vy + v4 + . There exists a rim vertex va + 3
which is adjacent to v4 by the isolate. Since n > 6, we consider the
other rim vertex e that adjacent to v; + 3. We retain the label e
that adjacent to vz + 3. Then the spoke [v, e} = v + e is a sixth
distinct rim vertex that adjacent to v2 by the spoke [(v2 + F),€] =
vy + (e + 3). [v2 + F,€] must be an isolate, otherwise the spoke
[ve(ve + e+ B)) = B + (v + e + ) = v2 + e implies vy is adjacent
to e, which is impossible in F,,. Obviously the isolates ve + v4 +
and vg + e + % are distinct.

Case 3. v3+v4 = T Or Up_3 + Vp—3 = 2 With n > 6.

We only consider v3+v4 = z and n = 6. when n > 6, the process
of proof is similar to that in the Subcase 2 of Case 2. Let vs be the
second rim vertex that adjacent to v4. Thus we have the following.

(i) Either vg = v + vs or [v4, (ve + vs)] exists; and
(ii) Either vs = v + vg or [vs, (Ve + v4)] exists.
Subcase 1. Either v4 # v, + vs5 or vs # vc + v4.
The proof is similar to that in the Subcase 1 of Case 2.
Subcase 2. v4 + v = v5 and vs + v; = v4.

Thus we have the center v, = %, the rim vertices v3, vs + (va),
vs and the isolate v3 + vs + 5. There exists a rim vertex v3 + 7 that
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adjacent to vs by the isolate. Since n = 6, the rim edge [vg,v5] =
(vs + F) + vs = 2us + F must be an isolate. Otherwise, either
v1=2u5+ F, va = 2us or vg = 2vus + B, v = 2us. If vy =25+ 3
and vy = 2us, then the rim edge [v2, v3] = 2us +v3 implies vs + Z(vq)
is adjacent to vs + v3 + F(z), a contradiction. If vy = 2us + Z and
v1 = 2vu5, we have the same result. But the isolates vz + vg + % and
2vs + v3 are distinct.

Case 4. v; + v;41 = z for some ¢ € {4,5,...,n — 4}, n > 8.

The verification is similar to Case 3. O

Theorem 2. p(F,) =2 for n even, n > 6.

Proof. Now consider the following mod sum labelling f of F, U2K].

Let -
ve = 25( — 1).

{'Ula V2,V3,V4y...,Un-1,Vn, } = {31 'Uc+(2g+1)a 5! vc+(2g_1)s reey 2;"'11 v¢+3}.
Let V(F,)U2K; ~ V(F,) = {u1,u2} and
uy = 25(% — 1)+ (n+4), u =25(g — 1)+ (n+6).

Modulo is 50(% —1). It is easy to verify that f is a mod sum labelling
of F,U2K;. By Lemma 4, thus we have 2 < p(F,,) < 2 and the result
follows. O

3. Symmetric complete bipartite graphs

Symmetric complete bipartite graph K, ,, for n > 3 is not a mod
sum graph in [5]. In this section we shall determine the mod sum
number of K, , for n > 2. Let r = p(Kp ) and S = V(K, ») UTK].
There exists a finite subset L of Z,, — {0} (m is suitable modulo). In
this labelling, we suppose that (X,Y) is a bipartite of K, ,, where

X ={zx1,22,...,20}, Y ={y,92,...,un}.

When n = 2, Ky is a mod sum graph. Let X = {1,4}, Y =
{2,8}, modulo is 5.
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We thus need to consider only the case when n > 3.
Lemma 5. p(Knp)2n forn>3.

Proof. For n > 3, K, is not a mod sum graph. So p(Knn) > 1.
It must exist a z; +y; € S— X UY,4,5 € {1,2,...,n}. Without loss
of generality, we may suppose z; +y1 € S — X UY, thus we have
T+ €S—-XUY,(i=1,2,...,n).

Assume the contrary, z1+y1 € S—XUY and z1+y; € XUY i €
{2,3,...,n}.
Case 1. 71 +y; € X. Thus we have z; + y; is adjacent to y;.
Hence [z1 + ¥, 1] = 21 + ¥ + 1 = (21 + 1) + y: implies that either
Z1+ Y1 = ¥; or x1 + ¥ is adjacent to y;, a contradiction.
Case 2. z; +y; € Y. Thus we have z;(j = 1,2,...,n) is adjacent
to z; +1; € X. Hence 7y + % + z; = z1 + (¥ + z;). Because
yi + z; exists. Either x; = y; + z; or z; is adjacent to z; + ;.
If ; = yi + zj, when ¢ = 1 we have y; = 0, a contradiction. If
T is adjacent to y; + zj, then y; + z;(j = 1,2,...,n) € Y. Thus
Y = {yi,¥i + Z1,¥% + Z2,...,¥i + Zn}. Since |Y| = n, there exists
some y; + zj = ¥, J € {1,2,...,n}, we have z; = 0, a contradiction.

Hence there are at least n distinct vertices {z1+y1, z1+¥2, ..., T1+
wmeS-XuY. O

Theorem 3. p(Knn)=n forn2>3.

Proof. Now we give a mod sum labelling f of K, UnKj.
{z1,z2,...,2n} £ {3,18,...,3+ (n — 1)15}

and

{v1,92,-- - yn} = {4,19,...,4 + (n - 1)15}
Let S - V(Kn,n) = {ul,u2, “eo ,un} and

{uy,ue,...,un} ={7,22,...,3+4 (n - 1)15}.

Modulo is 15n. It is easy to verify that f is a mod sum labelling of
KnnUnK;. By Lemma 5, thus we have n < p(Knn) < n and the
result follows. O}
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