CONICS CHARACTERIZING THE GENERALIZED
FIBONACCI AND LUCAS SEQUENCES WITH INDICES
IN ARITHMETIC PROGRESSIONS

EMRAH KILIG AND NESE OMUR

ABSTRACT. In this paper, we determine the conics characterizing the
generalized Fibonacci and Lucas sequences with indices in arithmetic
progressions, generalizing work of Melham and McDaniel.

1. INTRODUCTION

The second order recurrence {W, (a,b;p, q)} is defined for n > 0 by
Wagr = pWy — gWpy (1'1)

in which Wy = a, W1 = b, where q, b, p, g are arbitrary integers.
In (3], Horadam showed that

QW3 + Wiy = pWaWass +eg” =0
and
WaWaia — W;‘:_,_l = eq”
where e = pab — ga® — b°.

In [2], the authors considered all subsequences of sequence {Wy} of the
form {Wpy,} for any positive integer k. They also derived the recurrence
formula and trigonometric factorizations for them.

As some special cases of {W,}, denote W, (0, 1; p, —1),W, (2,p;p, —1),
W, (0,1;p,1) and W, (2,p;p,1) by Un, Vs, u, and vy, respectively. Now
we consider these sequences with indices in arithmetic progression for a
positive integer k. From [2, 1], the recurrence relations for these sequences
are given for k,n > 0 by

Uktne1) = ViUkn + Uk(n—1), (1.2)
Vetn+1) = ViVin + Vi(n-1) 13)
Uk(n+1l) = UkUkn — Ug(n—1),
Vk(n4+1) = VkVUkn = Uk(n-1)-
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The Binet forms of {Ukn},{Vin},{ukn} and {vin} are given by
Un = Ur%=5 and Vin =" + 4",
Upn = ukj',;—:—g" and vk, = Y" + 6"

where a, B and 4, & are the roots of equations 2> — Viz — 1 = 0 and
22 — vz + 1 = 0, respectively. Clearly Ukn, = Wy (0, Uk; Vi, —1),Vin =
Wa(2, Vi; Vi, =1)ukn = Wa(0, uk; vk, 1) and vgn = Wy (2, vk; vk, 1) -

From [8], we know that Lucas proved that if z and y are consecutive
Fibonacci numbers, then (z,y) is a lattice point on one of the hyperbolas
y? —xy— 22 = £1 and Wasteels proved the converse. Some authors [4, 7, 9]
discussed the conics whose equations are satisfied by pairs of successive
terms of Lucas sequences. In [5], McDaniel proved converses to several of
the results of these writers. For example, he proved the following.

Theorem 1. Let z and y be positive integers. The pair (z,y) is a solution
of y2 — pry — 22 = £1 iff there exists a positive integer n such that x = Uy,
y="Uns.

In [6], the author generalized McDaniel’ s results and gave some new
results. For example, he proved the following.

Theorem 2. If m is even, then the points with integer coordinates on the
conics y2 — Vinzy + 22 F U2 = 0 are precisely the pairs F (Un, Un+4m) -

In this paper, we consider all given results on special conics mentioned
below and then give more general results, generalizing work of Melham and
McDaniel.

2. SOME PRELIMINARY RESULTS

In this section, we give some results related to the sequences {Un} and
{Vin} for further steps. Throughout this paper, we denote V;2+4 and v —4
by D; and D;, respectively. Note that

UZ(VZ,—4) = DU, ifmiseven (2.1)
UZ(V2,+4) = DU, ifmisodd (2.2)
UknViem + VienUgm = 2Uls:(m+'n)a (23)

_ 2Uk(n-my)  if mis even,
UknViem = VinUkm = { Wy ifmisodd, &4
U]Z anVkm + (sz + 4) Uankm 2UI§ Vk(m+n)7 (2'5)

2U,3Vk(,,_m) if m is even
{ Vi if m is 0dd. )

Uz‘/]kam - (‘/,62 + 4) UknUgm =

Lemma 1. The integer solutions of D1x? + 4UZ = y2UZ are precisely the
pairs (£Uzkn, d:V'lkn) .
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Proof. Teking Dy = Vi2+4, £ = Uzky, in the equation D22 +4U? = 32U,
we write

(V& +4) U2, +4U3

23 ” 2
((®+87)" +4) UR (Z28=) " + a2
= Ui (o' +p'" +2) = UV,

So one can see that y = Van. The proof is also valid for the pair (—Uszgn, —Vakn) -
Thus the theorem is proven. O

Using the technique in Lemmas 1, the proofs of Lemmas 2, 3 and 4 can
be easily obtained.
Lemma 2. The integer solutions of D1z% — 4UE = y2U} are precisely the
pairs (iUk(2n+1)’in(zn+x)) .
Lemma 8. If D, is square free, then the integer solutions of D1UZ (:z:2 - 4) =
¥ and D1U? (2® +4) = y? are precisely the pairs (£Varn, +D1Uskn) and
(FVrzn+1), £D1Uk(2n+1)), respectively.
Lemma 4. The integer solutions of Ufy® — Diz? = +4U? are precisely
the pairs (XUgkn, £Vin) .

Similar to the above results, here we give some basic results related to
{uin} and {vin }:

uf (Vin—4) = Dyul,, (2.7)

UknVkm + Vknlkm =  2Uk(metn)) (2.8)
UknUkm — Vknlkm = 2Uk(n—m), (2.9)
uivknvkm + Dotpnkerm = 2uivk(m+n), (2.10)
U UknVkm — DoltknUem = 2u%vk(,,_m). (2.11)

By the Binet forms of {uxn} and {vin}, we have the following results
without proof.

Lemma 5. The integer solutions of Doz? + 4u} = uly? are precisely the
pairs (tugn, £vk,) .

Lemma 6. The integer solutions of Dauf (z% — 4) = y2 are precisely the
pairs (£vgn, £Dauky) .

Lemma 7. The integer solutions of uly? — Doz? = 4u? are precisely the
pairs (Lugn, v, ) .

3. Conics CHARACTERIZING THE SEQUENCES {Ukn},{Vin}, {ukn}
AND {vgn}

Conics characterizing the Fibonacci and Lucas sequences were given in [5]
and [6]. Here we determine the conics characterizing the more generalized
Fibonacci and Lucas sequences with indices in arithmetic progress.
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Theorem 3. If m is even, then the points with integer coordinates on the
conics y2 — Vimay+ 22 F U2, = 0 are precisely the pairs F (Uin, Uk(nim)) -

Proof. First we consider the case y2 — Vimzy + 22 + Ug,,, = 0. Considering
this equation as a quadratic equation in y, by (2.1), we get

Y= (VkmUk:‘B + Ukm\/ Dyx2? - 4U,3) [2U.

From Lemma 2, the integer points arise only when z = Ug(2n41). Thus
¥ = (VimUsk(ant1) £ UkmVizns1)) /2- (3.1)

By (2.3) and (2.4), we get the integers points (z,y) = F (Ukizn+1)» Uk(2n+1+m))
and (2,%) = F (Ur@n+1)> Ukzn+1-m)) for all integer n. Similarly the
integers points on the conic ¥2 — Vimay + z° — UZ, = 0 are (z,y) =
F (Uzkn, Uk(2n4+m))- Thus the proof is complete. a

For k = 1,m = 2, the points :F(F31F5) = :F(2’5) 1:F(F5,F7) = :F(51 13)
are on the conic y? — 3zy + 22 + 1 = 0. We illustrate these points in the
following figure:
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Considering the proof method of Theorem 3, we give the following Theorems
without proof.

Theorem 4. For odd m, the points with integer coordinates on the conics
42 — Vimzy — 22 F UZ,, = 0 are precisely the pairs F (Un, Uk(n+m)) -
Theorem 5. For even m and square free D, the points with integer coor-
dinates on the conics Uly® — VimUZay + UZz® F D1UE,, = 0 are precisely
the pairs F (ana Vk(n+m)) .

Theorem 6. For odd m and square free D;, the points with integer coor-
dinates on the conics U2y? — VimUZay — UZa® F D\UZ,, = 0 are precisely
the pairs F (Vin, Vi(nam)) -
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Theorem 7. For all m, the poinis with integer coordinates on the conics
¥? — vkmay + 22 —u?,, = 0 are precisely the pairs F (Ukns Uk(ntm)) -

Theorem 8. For all m and square free Dy, the points with integer coordi-
nates on the conics ufy? — vimuizy + uZz? + Dyul, . = 0 are precisely the
pairs F ('Ukrn 'vk(n+m)) .

Clearly Theorems 4-8 are the general cases of the result of Melham [6]
for k=1.

4. DIOPHANTINE REPRESENTATIONS OF THE SEQUENCES

The set of terms of any Lucas sequence is a recursively enumerable set,
and such sets have been shown to be Diophantine [10] . That is, for each
recursively enumerable set S, there exists a polynomial P with integral co-
efficients in variables z1,zo,...,2,, such that = € § iff there exist positive
integers y1,¥2,...,Yn—1 such that P(z,y1,y2,...,yn—1) = 0. As a conse-
quence, it is possible to construct a polynomial whose positive values are
precisely the elements of S. The construction is due to Putnam [1 1], who
observed that z (1 — P?) has the desired property. In [5], the authors con-
sidered the mentioned facts and obtained such polynomials for the set of
the sequences {Un},{Vp},{un} and {v,}. From the results of Theorems
4,6,7,8 and Lemmas 4, 7, we obtain such polynomials for the set of terms
of sequences {Uin}, {Vin}, {tkn} and {vgn} as generalizations of results of
[5].

Let F (Vg,—1),F (vk,1),L (Vk,—1) and L (vk, 1) be the set of terms of
sequences {Ukn}, {tkn},{Vin} and {vgn}, respectively.

Theorem 9. Then, if z and y assume all positive integral values, the set
S is identical to the set of positive values of the polynomial

(@) @ [2- ge (0 - Veoy - 23)°] i §=F (Vi -1),
(ii) :z:[2—;12~(y2—vkzy+x2)] if§=F (v, 1), 1 =p>2

2
(i) y [1 - ((y2 — Dia?)® - 16U,§) ] if § =L (Vk,—1), D; = V2 +4,
(iv) y [1 — ((¥* — Daa?) - 4u§)2] if §=L(v,1), Dy =v% - 4.
Proof. From the special cases of Theorems 4, 7 for m = 1 and Lemmas 4,

7, the proof is obvious. We show that y? — Vizy — 22 and y2 — vyzy + 22
are never 0 for = and y integers. However, if either equals 0, we write y =

(V;c VE+ 4) /2, y= (vk + /v - 4) /2, respectively. Since neither
V2 + 4 not v} — 4 is a square, y is irrational for all integral z values. [
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By Lemmas 4, 7, the polynomials in (i) and (ii) can also be given:

2
x [1 - ((y2 - Dlacz)2 - 16U,f) ] for Dy = VZ+4,

z[1= (4 - Daa®) —4u)’] for Dz = o} -4,
respectively. By special cases of Theorems 6, 8 for m = 1, the polynomials
in (iii) and (iv) can be given, alternatively, if D, and D, are square free, as

T [1 - ((y2 - Viay —2?)” - Df)z]

and )
m[l—(yz—vkxy+x’+Dz) ]

respectively.
When k =1 in given results throughout Section 4, the results of (5] can

be derived.
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