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Abstract

We determine a recursive formula for the number of rooted complete N-
ary trees with n leaves, which generalizes the formula for the sequence of
Wedderburn-Etherington numbers. The diagonal sequence of our new se-
quences equals to the sequence of numbers of rooted trees with N + 1 ver-
tices.
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1 Introduction

A problem occurring in hardware design is the following: Given an n-operand ad-
dition that has to be realized by a set of binary adders, how many possibilities are
there to arrange the adders? [1) To be precise we do not care about commutative
operations, which can be executed on the adders without changing the arrange-
ment. In a mathematical language, we seek for the number of interpretations of z"
(or the number of ways to insert parentheses) when multiplication is commutative
but not associative, or, from another point of view, we are looking for the number
of isomorphism classes of n-leaf complete binary rooted trees (where every vertex
has either O or 2 children). These numbers are known as Wedderburn-Etherington
numbers, their sequence (T, ), has the key A001190 in the On-Line Encyclopedia
of Integer Sequences [2] and its generating function B(z) satisfies the functional
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equation
B(z) ==+ 3 (B(2)? + B(s?)),

cf. [3]. So, a recursive method to calculate the sequence is given by

Tl = 1:
n
Tn41(Tot1 +1
Tony2 = Z T: - Ton42-i + -Ll(-z—“——l forn 20,

i=1

n
Tony1 = ZTz ‘Topng1—i forn2>1.

i=1

The aim of this paper is to generalize this formula from complete binary to com-
plete N-ary trees (or from binary adders to N-ary adders as building blocks).

Thus we want to determine the number TS of isomorphism classes of rooted
trees with n leaves with the property that each vertex has either N or 0 children.

2 Recursive formula

To abbreviate notation, we call such a rooted complete N-ary tree with n leaves
an n-tree whenever N is fixed. Let

D .
PP = #{(h1, ... . hD)V: by 21, =i} = ( 5—_11 ) o

=1

be the number of unordered partitions of i into D pieces. Then we may formulate

Theorem 1 For N > 2andn > 2, TN can be calculated recursively via

™ = 1,
o b4 ™)
™= > ¥ 1 (%-1)(% )
b=1 ('l‘ v"b) 1<k (k,:, ,kb)k< j=1D=} D
Yo, i=N ) <kz < - <kpSn
{j;IJVJ E; 1iiki=n

Proof. Clearly, TI(N) = 1. So consider an n-tree, n > 1. Then its root has
N children that are roots of ry-, r2-,...,7N-trees, respectively, with 7, > 1 for
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all s, and Zﬁf_,l rs = m. 74 is called input size of the s-th child’s tree. Since
we do not care about permutations we may assume without loss of generality that
1 <12 < ... < rn. We call the set of those r;-trees with the same input size
a block, and denote the number of blocks by b. The block size is the number of
elements of a block. So we have blocks of (positive) block sizes 41, .. ., i, with
respective input sizes ky,...,k, wherew.l.o.g. 1 < k; < .-+ < ky < n. We state

that
b b
Eijkj=n, Zij:N

We will count at first the number of possibilities for a block with block size ¢ and
input size k, a number which we denote by B(k,i). Then we derive the num-
ber T'(b, (i1, ..., ), (k1,...,ks)) of trees for fixed (ry,...,rn), ie., for fixed
b, block sizes iy, ..., i, and input sizes k1, ..., ky. Note that for distinct values
of the 3-tupel (b, (41,...,1), (k1,..., ky)) trees cannot be isomorphic, since iso-
morphic trees must have the same number of blocks, corresponding block sizes,
and corresponding input sizes, as we assume k; < - -- < ky. Therefore we obtain
the total number of n-trees simply by adding T (b, (i1, . ..,1s), (k1,. .., ks)) over
all possibilities for (b, (i1, ..., %), (k1,-. -, kb)), i.e.,

N
M=% > Yo TGy iv), (krye s k). ()

b=1 (1!’ ‘"7) (klr nkb)
2,_11,_N1<k1<k2< <kp<n

;21 V4 E:—l ijkj=n

Now we consider a block with i elements, each one having input size k. Let D be
the number of distinct k-trees occurring in the block. We have

ol )
D

possibilities-to choose D such structures, and p( ) possibilities to partition the
k-trees of the block in D subblocks each one having equal k-trees as elements.
These choices are independent in the sense of non-isomorphism, so in total we

have .
(D) T( )
p 1 D

B(k,i) = Zp“” ( gv) ) : 3)

possibilities, and
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Now, what happens in different blocks is independent of each other block again,
thus we conclude

b
T(b, (i1, - - - s, (k1, - .. ko)) = [ [ Blksys)- (4)
j=1

Combining (1), (2), (3), and (4) yields the theorem. Note that in the right-hand-
side of the recursive formula the expression T,(,N) does not occur, since kp < n
whenever N > 2. O

3 Final remarks

A very interesting sequence is the diagonal sequence

(ng))N=2,3,4,... =2,4,9,20,48,115,...

Theorem 2 T IE,IZ) equals to the number of rooted trees with N + 1 vertices.

Proof. We construct an isomorphism between rooted complete N-ary trees with
N2 leaves and rooted trees with N + 1 vertices, N > 2, in the following way. Let
T be a rooted complete N-ary tree with N2 leaves. Delete all leaves to obtain a
rooted tree with N + 1 vertices. (Note that there are always N + 1 inner vertices
in T.) On the other hand, let R be a rooted tree with N + 1 vertices. So every
vertex has at most N children. Construct a complete N-ary tree from R by adding
children in such a way that every vertex from R has exactly N children, and every
new vertex has no children. Obviously, these mappings are one-to-one. O

: (N) — (n)
Theorem3 lim Ty n_1y41 = To

Proof. Let T be a rooted complete N-ary tree with (n + 1)(N — 1) + 1 leaves,
and N > n. This means that T has exactly n+ 1 inner vertices, hence every inner
vertex has at most n children which are inner vertices. So for every inner vertex
we may delete N — n of its children which are leaves to obtain a rooted complete
n-ary tree with (n + 1)((N — 1) — (N — n)) + 1 = n? leaves. This construction
can be reversed by adding children in an appropriate way. 0
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