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ABSTRACT. Given non-negative integersr, s, and ¢, an [r, s, t]-coloring
of a graph G = (V(Q), E(G)) is a mapping ¢ from V(G) U E(G) to
the color set {0,1,...,& — 1} such that |e(v;) — c(vj)| > r for every
two adjacent vertices v;, v;, [c(ei) —c(e;)| 2> s for every two adjacent
edges e;, e;, and |c(v;)—¢(e;)| > ¢ for all pairs of incident vertices and
edges, respectively. The [r, s, t]-chromatic number x,s,¢(G) of G is
defined to be the minimum k such that G admits an [r, s, t]-coloring.
We prove that x1,1,2(Ks) = 7 and x1,1,2(Ks) = 8.
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1. INTRODUCTION

Vertex coloring, edge coloring and total coloring are three classical col-
orings of graphs. Kemnitz and Marangio generalized these colorings to
[r, s, t]-colorings ([1]).

Definition 1. ([1]) Given non-negative integers r,s, and ¢, an [r,s, ]-
coloring of a graph G = (V(G), E(G)) is a mapping ¢ from V(G) U E(G)
to the color set {0,1,...,k — 1} such that |e(v;) — ¢(v;)| > 7 for every two
adjacent vertices v;,v;, |c(e;) — c(e;)| = s for every two adjacent edges
ei,ej, and |c(v;) — c(e;)| > ¢ for all pairs of incident vertices and edges,
respectively. The [r, s, t]-chromatic number x,.; +(G) of G is defined to be
the minimum k such that G admits an [r, s, {|-coloring.

It is easy to see that a [1,0, 0]-coloring is an ordinary vertex coloring, a
0,1, 0]-coloring is an edge coloring, and a (1,1, 1]-coloring is an ordinary
total coloring. [r, s, t]-colorings are discussed in [1]-[4], and many results are
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obtained. It is difficult to determine xr,s,¢(G) of a graph without constraint
onr,s,t. In[1], the authors discuss [r, s, t}-colorings of complete graphs Kp,
and determine xr,s¢(Kp) in many cases with min{r, s,t} > 1. The smallest
case with min{r, s,t} > 1 which is not covered is x1,1,2(K). And they get
that

Proposition 2. [1] Ifp is odd, thenp+1 < x112(Kp) < 2p—1. Ifp is
even, then p+ 1 < x1,1,2(Kp) < 2p.

If p = 3 or 4, they have x1,1,2(K3) = 5 and x3,1,2(K4) = 7 where the
upper bound is achieved.
In this paper we show that x1,1,2(K5s) =7 and x1,1,2(Ks) = 8.

2. OUR MAIN RESULTS

In a vertex and edge coloring of a graph G, we write #(c1,c2,-- ,ck) to
denote a vertex with color 7 and its incident edges with colors from the set

{clv e ,Ck}.
Theorem 3. Ifp > 2, then x1,12(Kp) > p+2.

Proof. If p = 2, obviously a [1, 1,2]-coloring of K3 needs at least 4 colors.
Now suppose that p > 3. Let ¢ be a coloring of vertices and edges
of K,, whose color set is {0,1,---,p}. Ifcisa {1,1, 2]-coloring of K,
then the possible colors of the vertices are: 0(2,3,:--,p), 1(3,4,---,p),
2(0a4s"' ,p)) Tty (P— 1)(0,1,--- ,p-3),p(0,1,--- ,p_2)- Since Kp is a
complete graph, each vertex receives distinct colors. So at least p—2 colors
in {1,2,---,p — 1} are used. Without loss of generality, suppose that one
vertex v receives color 1. The color set for its incident edges is {3,4, - - ,p},
but there are p — 1 edges incident to v, a contradiction. It follows that ¢
isn’t a [1, 1, 2}-coloring of Kp. Thus x1,1,2(Kp) 2p+2.
O

Theorem 4. x1,1.2(Ks) = 7, and there ezist 4 different [1,1,2]-colorings
Of K5.

Proof. By Theorem 3, x1,1,2(Ks) > 7. Next we will show that x1,1,2(Ks) <
7.

Let ¢ be a coloring of vertices and edges of K5 with color set {0,1,---,6}.
If ¢ is a [1,1,2]-coloring of K5, then the possible colors of vertices are:
0(2,3,4,5,6), 1(3,4,5,6), 2(0,4,5,6), 3(0,1,5,6), 4(0,1,2,6), 5(0,1,2,3)
and 6(0,1,2,3,4). According to the colors of vertices we consider the fol-
lowing cases.

Case 1. The coloring uses 1(3, 4, 5, 6), 2(0, 4, 5, 6), 3(0, 1,5, 6), 4(0, 1,2, 6).
Each edge color must appear an even number of times in the five edge
color sets. Considering color 1, the last vertex can’t be colored with
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FIGURE 1. Two (1, 1, 2]-colorings of K.

5(0,1,2,3). And considering color 0 and 1, the last vertex must be col-
ored with 6(0,2, 3,4). Now color 4 appears 3 times in the 5 edge color sets,
a contradiction.

Case 2. The coloring uses 1(3, 4,5, 6), 2(0, 4,5, 6), 3(0, 1,5, 6), 5(0, 1,2, 3).
Considering color 0, the last vertex must be colored with 6. Now color 5
appears 3 times in the 5 edge color sets, a contradiction.

Case 3. The coloring uses 1(3, 4, 5,6), 2(0,4, 5, 6), 4(0, 1,2,6), 5(0, 1,2, 3).
Considering color 0, the last vertex must be colored with 6. Now color
6 appears 3 times in the 5 edge color sets, a contradiction. With the
same argument, the coloring can’t use 1(3, 4,5, 6), 3(0,1,5,6), 4(0,1,2,6),
5(0,1,2, 3).

Case 4. The coloring uses 2(0, 4,5, 6), 3(0, 1,5, 6), 4(0, 1,2,6), 5(0,1,2, 3).
Considering color 1, the last vertex must be colored with 6, while color 6
appears 3 times in the 5 edge color sets, a contradiction.

So if ¢ is a [1,1,2]-coloring of K35, two vertices must be colored with
0(2,3,4,5,6) and 6(0,1,2,3,4).

Case 5. The coloring uses 0(2, 3,4, 5,6), 1(3,4,5,6), 2(0,4,5,6), 3(0,1,
5,6), 6(0,1,2,3,4). Considering color 0 and 3, the vertices with color 6 and
0 have edge color sets {1,2,3,4} and {2,4, 5,6}, respectively. In this case
we get two [1, 1, 2]-colorings of K5 (see Figure 1).

Case 6. The coloring uses 0(2,3,4,5,6), 1(3,4,5,6), 2(0,4,5,6), 4(0, 1,
2, 6), 6(0,1,2,3,4). Considering color 0 and 5, the vertices with color 6
and 0 have edge color sets {1,2,3,4} and {2, 3,4, 6}, respectively. Therefore
color 2 appears an odd number of times in the 5 edge color sets, a contradic-
tion. Similarly, in the coloring the vertex color set can’t be: {0,1,2,5,6};
{0,1,3,4,6}; {0,1,3,5,6}; {0,1,4,5,6}; {0,2, 3,4,6}; {0,2,3,5,6}); {0,2,4,
5,6}.

Case 7. The coloring uses 0(2,3,4,5,6), 3(0,1,5,6), 4(0,1,2,6), 5(0,1,
2,3),6(0,1,2,3,4). Considering color 6 and 3, the vertices with color 0 and
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FIGURE 2. The other two [1, 1, 2]-colorings of Ks.

FIGURE 3. A [1, 1, 2]-coloring of K.

6 have edge color sets {2,3,4,5} and {0,1,2,4}. In this case we get two

[1,1,2]-colorings of K5 (see Figure 2).
0

In the two colorings of Figure 1, changing each color i to |6 — i}, we can
get the two colorings of Figure 2.
Theorem 5. X1,1,2(K6) =8.

Proof. By Theorem 3, x1,1,2(Kes) = 8. The following coloring shows that
x1,1,2(Ks) = 8. The corresponding coloring is: 0(2,3,4,6,7), 1(3,4,5,6,7),
3(0,1,5,6,7), 4(0,1,2,6,7), 6(0,1,2,3,4), 7(0,1,2,3,4) (see Figure 3).

a

Note. We have been informed that the [1, 1, 2]-chromatic numbers of
Ks, K¢, K+, Kg, were obtained by Juliane Lehmann in her diploma thesis
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“[r, s, t]-colorings of stars and complete graphs”, at the Technical University
of Braunschweig in 2006.

Acknowledgments. The authors would like to thank the referee for his
detailed and helpful suggestions.

REFERENCES

(1] A. Kemnitz, M. Marangio. [r, s, t]-Coloring of graphs. Discrete Math., 2007, 307:
199-207.

{2] A. Kemnitz, M. Marangio, P. Mihok. [r, s, t]-Chromatic and hereditary properties of
graphs. Discrete Math., 2007, 307: 916-922.

[3) L. Dekar, B. Effantin, H. Kheddouci. [r, s, t]-Coloring of trees and bipartite graphs.
Discrete Math., 2008, doi: 10.1016/j.disc.2008.09.021.

[4] C. Xu, X. Ma, S. Hua. [r, s, t]-coloring of Kn,n. J. of Appl. Math. and Computing,
2009, 31(1): 45-52.

E-mail address: chqxuChebut.edu.cn

475



