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Abstract

Let G = (V, E) be a graph. A set S C V is a restrained dominat-
ing set if every vertex not in S is adjacent to a vertex in S and to a
vertex in V — 5. The restrained domination number of G, denoted by
7-(G), is the smallest cardinality of a restrained dominating set of G.
It is known that if T is a tree of order n, then v-(T") > [(n + 2)/3].
In this note we provide a simple constructive characterization of the
extremal trees T of order n achieving this lower bound.

1 Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E)
be a graph with vertex set V and edge set E. Moreover, the notation
P, will denote the path of order n. A set S C V is a dominating set of
G if every vertex not in S is adjacent to a vertex in S. The domination
number of G, denoted by ¥(G), is the minimum cardinality of a dominating
set. The concept of domination in graphs, with its many variations, is now
well studied in graph theory. The recent book of Chartrand and Lesniak
[1] includes a chapter on domination. A thorough study of domination
appears in [5, 6].

In this paper, we continue the study of a variation of the domination theme,
namely that of restrained domination 2, 3, 4,7, 8. Aset SC Visa
restrained dominating set if every vertex not in S is adjacent to a vertex
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in S and to a vertex in V — S. Every graph has a restrained dominating
set, since S = V is such a set. The restrained domination number of G,
denoted by 7,(G), is the minimum cardinality of a restrained dominating
set of G. A restrained dominating set of cardinality v-(G) will be called a
7(G) — set.

The concept of restrained domination was introduced by Telle and Proskurowski
[8], albeit indirectly, as a vertex partitioning problem. Here conditions are
imposed on a set S, the complementary set V — S and on edges between
the sets S and V — S. For example, if we require that every vertexin V — 8
should be adjacent to some other vertex of V — S (the condition on the set

V = S) and to some vertex in S (the condition on edges between the sets

S and V — S), then S is a restrained dominating set.

One application of domination is that of prisoners and guards. For security,
each prisoner must be seen by some guard; the concept is that of domi-
nation. However, in order to protect the rights of prisoners, we may also
require that each prisoner is seen by another prisoner; the concept is that
of restrained domination.

It is known [2] that if T is a tree of order n, then ¥(T) > [(n + 2)/3].

We refer to a vertex of degree 1 in T as a leaf of T. A vertex adjacent to
a leaf we call a remote vertez of T. For a vertex v of T, we shall use the
expression, attach a Pp, at v, to refer to the operation of taking the union
of T and a path P,, and joining one of the ends of this path to v with an
edge.

For n > 1, let T, = {T' | T is a tree of order n such that v(T') = [(n +
2)/31}. A constructive characterization of the extremal trees T of order
n achieving this lower bound were characterized in [2]. For the purpose of
stating this characterization, we define a type (1) operation on a tree T as
attaching a P, at v where v is a vertex of T not belonging to some minimum
restrained dominating set of T, and a type (2) operation as attaching a
P; at v where v belongs to some minimum restrained dominating set of T'.
For i = 1,2, let T; be the tree obtained from K(1,3) by subdividing ¢ edges
once.

Let Car = {T'| T is a tree of order 3k which can be obtained from the tree
T by a finite sequence of operations of type (2)}. Let Cag41 ={T | T isa
tree of order 3k + 1 which can be obtained from P, by a finite sequence of
operations of type (2)}. Finally, let Carq2 = {T' | T is a tree of order 3k +2
which can be obtained from Ps; or from the tree T} by a finite sequence
of operations of type (2)} U {T' | T is a tree of order 3k + 2 which can be
constructed from the tree T3 by a finite sequence of operations of type (2},
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followed by one operation of type (1) and then by a finite sequence of
operations of type (2)}.

It was established in [2] that

Theorem 1 Forn >4, 7, =C,.
The purpose of this note is to provide a simpler constructive characteriza-
tion of the extremal trees T of order n achieving this lower bound.

We denote the set of leaves of a tree T by L(T). Forv € V(T') and £ € L(T),
the path vz ... z¢ is called a v — L endpath if deg z; = 2 for each 4. If the
vertex v need not be specified, a v — L path is also called an endpath.

2 Extremal trees T with +,(T) = [(n + 2)/3]

Let 7 be the class of all trees T' of order n such that 7 (T) = [2$2].
We will constructively characterize the trees in 7. In order to state the
characterization, we define three simple operations on a tree 7.

O1. Join a leaf or a remote vertex, or a vertex v or = of T on an endpath
vryz to a vertex of K;, where n(T') = 1 mod 3.

02. Join a remote vertex, or a vertex v of T which lies on an endpath vzz
to a leaf of P, where n(T") = 0 mod 3 or n(T) = 1 mod 3.

03. Join a leaf of T to ¢ disjoint copies of P; for some ¢ > 1.

Let C be the class of all trees obtained from P, or Py by a finite sequence
of Operations O1- O3.

We will show that T € T if and only if T € C.
Let S be a +,-(T")-set of T” throughout the proofs of the following lemmas.

Lemma 2 Let T' € T be a tree of order n = 1 mod 8. If T is oblained
Jrom T' by Operation O1, then T € T.

Proof. Let u be a leaf or a remote vertex, or a vertex w or z on an endpath
wzyz of T, and suppose T is formed by attaching the singleton v to u.
Then SU {v} is a RDS of T, and so [2$2] < +,(T) < [2£2] + 1. Since
n = 1 mod 3, we have 1.(T) = [iqz,&]. Thus, Te 7. 0O
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Lemma 3 Let T’ € T be a tree of order n =0mod 3 or n = 1mod 3. If
T is obtained from T' by Operation O2, then T € T. '

Proof. Suppose v is a remote vertex or v lies on the endpath vzz and T
is obtained from T" by adding the path vyz’.

We show that v ¢ S. First consider the case when v is a remote vertex
adjacent to a leaf z. Suppose v € S. Then &' = § — {2z} is a RDS of
T" =T' — 2, and so [2§1] < 4 (T") < [2£2] — 1, which is a contradiction
when n =0 mod 3 or n =1mod 3. Thus, v € S.

In the case when v lies on the endpath vzz, one may show, as in the previous
paragraph, that =z ¢ S. But then v € S, as required.

In both cases, the set S U {2’} is a RDS of T, and so [2}4] < 4(T)
[2£2] + 1. However, as » = Omod 3 or n = 1 mod 3, we have 7 (T)

[244] = [20+2], Thus, T€ 7.

<

The proof is complete. O

Lemma 4 Let T' € T be a tree of order n. If T is obtained from T’ by the
Operation O3, then T € T.

Proof. Let S be a ~.(T")-set of T, and suppose v is a leaf of T’. Then
v € 8. Let T be the tree which is obtained from T by adding the paths
vz fori = 1,...,2. Then SUL, {2} isa RDS of T, and so [2£3&2] <
7+(T) < [242] + £. Consequently, v(T) = [ﬂ%ﬁ'—g], andsoTe€7.D

We are now in a position to prove the main result of this section.
Theorem 5 T €C if and only if T€ T.

Proof. Suppose T € C. We show that T € T, by using induction on s(T'),
the number of operations required to construct the tree T'. If s(T') = 0,
then T = P, or T = P;, both of which are in 7. Assume, then, for all trees
T’ € C with s(T") < k, where k > 1 is an integer, that T isin 7. Let T €
C be a tree with s(T") = k. Then T is obtained from some tree T” by one of
the Operations O1 — O3. But then TV € C and s(T’) < k. Applying the
inductive hypothesis to T", T" is in 7. Hence, by Lemmas 2,30r4, T € 7.

To show that T € C for a nontrivial T € T, we use induction on n, the
order of thetree T. If n=2,then T=P, € C. fn=3,then T ¢ T. If
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n = 4, then either T = P; or T is a star. If T is a star then T ¢ 7. If
T=PythenT €C. Let T € 7 be a tree of order n > 5, and assume for
all trees T' € T of order 4 < n' < n, that T’ € C. Since n(T') > 5 and no
stars are in 7, diam(T") > 3.

If diam(T) = 3, then T is a double star of order 5, has a remote vertex ad-
jacent to two leaves, and is therefore constructible from Py by O1, whence
T € C. Thus, we may assume diam(T) > 4.

Throughout S will be used to denote a v, (T)-set of T'.

Claim 1 Suppose z is a leaf of T. If S — {2z} is a RDS of T' = T — z,
thenn(T') =1 mod 3 and T' € C.

Proof. Suppose S — {z} is a RDS of T". Then [2=#2] < 4(T") <
['—"‘—] — 1. This yields a contradlctlon when n=0mod 3 or n =1 mod 3.
Hence, n = 2 mod 3, and v.(T") = [M] Thus, TV € T, with
n(TM=n-1=1 mod 3. By the mductlon assumption, TV € C. ¢

Suppose vzz or vz is an endpath of T. If v,z € S, then § — {z} is a RDS
of T = T — z. By Claim 1, the tree T = (T — z) € C and T can be
constructed from T” by Operation O1. Thus, if vzz or vz is an endpath of
T, we may assume v,z € S.

Suppose v is a remote vertex adjacent to at least two leaves, and let z be
a leaf adjacent to v. Then S — {z} is a RDS of T/ = T — 2. By Claim 1,
the tree 7" = (T'— z) € C and T can be constructed from 7" by Operation
O1. Thus, we may assume that every remote vertex is adjacent to exactly
one leaf.

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance diam(T") — 2 from r.
Suppose v lies on the endpath vyz’. Then, by the above remark, v,y ¢ S.
Suppose deg(v) > 3 and first assume v is a remote vertex adjacent to a
leaf u. Since diam(T) > 4, v has a parent vertex vo. Suppose vp € S. If
deg(v) > 4, since, by Claim 1, v is adjacent to one leaf only,  is on an
endpath vzz where z ¢ S. Smce v € S, it follows that §' =S — {u,z} isa
RDS for T’ = T—u—z— 2. Hence, [!"—-3-&] < 7(T") < [2£2] -2, which
is a contradiction. Hence deg(v) =3. Conmder T’ =T —u. The vertex v in
T" is on the endpath wowvyz’. Since v € S, it follows that &' = § — {u} is a
RDS for T'. Thus, by Claim 1, T’ € C and T can be constructed from T" by
Operation O1, whence T e€C. Sosuppose vp ¢ S. Then §' =S5 — {2’} isa

481



RDS for T/ = T —y— z'. Hence, [1"—'§u'3] < % (T) < [242] -1, which is
a contradiction when n = 1 mod 3. Hencen =0 mod 3 or n =2 mod 3 and
7e(T') = [2] = [2L22]. Thus, T' € 7, with n(T") =n —2 = 0mod 3
or n(T") = n— 2 = 1 mod 3. By the induction assumption, 7" € C. The
tree T can now be constructed from 7" by applying Operation O2, whence
TeC.

Hence we may assume v is not a remote vertex. Then v lies on the endpaths
vzz and vyz’. It follows that §' = S — {2/} isa RDSfor TV =T —y — 2'.
Hence, by reasoning similar to that in the previous paragraph, the tree T
can be constructed from T’ by applying Operation O2, whence T € C.

Thus, we assume each vertex on a longest path at distance diam(7T") — 2 or
diam(T") — 1 from r has degree two.

Let v be any vertex on a longest path at distance diam(7T") — 3 from r. Let
vz1y12 be an endpath of T. Then z1,y1 € S,andsov € S.

Suppose deg(v) > 3. If v is on an endpath vzz, it follows that =,z € S.
By the remark following Claim 1, T € C. Suppose v is a remote vertex
adjacent to a leaf . By Claim 1, u is the only leaf adjacent to v. Moreover,
S' =8 - {u} is a RDS for T’ = T — u. Thus, by Claim 1, T"eCand T
can be constructed from T’ by Operation O1, whence T € C.

So we may assume that v lies only on cndpaths vz;y;z;, foré =1,...,¢€. Let
e be the edge that joins v with its parent, and let T'(v) be the component
of T — e that contains v. Then T(v) consists of £ disjoint paths ;y;2:
(¢=1,...,0) with v joined to z; fori = 1,...,¢. Let i € {1,...,€}. Since
z;yiz; is an endpath of T, we have z; ¢ S, y; ¢ S and v € S. Then
S—Ul {z}isa RDS of ' =T — (T(v) — {v}), and so [2=342] <
7+(T") < [2£2] — ¢, whence 7 (T") = [2Z2*2). Thus, T’ € 7, and by the
induction assumption, 7" € C. Note that v is a leaf of T”. The tree T can
now be constructed from T’ by applying Operation O3, whence T € C. O
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