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Abstract

In [3], we gave a factorization of the generalized Lah matrix.
In this short note, we show its another factorization. From
this factorization, several interesting combinatorial identities
involving the Fibonacci numbers are obtained.
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In this note, we shall still apply the definitions of the generalized
Lah number L, x(z,y) and the generalized Lah matrix L[z, y] in [3].

Let = and y be two nonzero real numbers. the generalized Lah
numbers are defined by L, x(z,y) = z"y* (Z:} "p' The n x n gener-
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alized Lah matrix L[z, y] is defined by

g (TDE, if i
= i g P i— = =1/ 30 =
E[x? y] [L“',J (m’ y)]@yfl—lﬂv-wn { 0’ OtherWise. (1)

Let F,, be the n-th Fibonacci number. The n x n Fibonacci
matrix F = [f; j] ({,5 =1,2,...,n) is defined by

L F‘i—j+1$ 1f’t—]+120,
f,,,—{ 0, ifi—j+1<0. (2)

In [1), Lee, etc. gave the inverse of F as follows: if F 1 =|f! )
(4,7 =1,2,...,n), then

1, if¢=j,
fi’,j_—. -1, ifi-2<j<i—-1, (3)
0, otherwise.

By using the inverse of F, in [2], Lee, etc. studied the Pascal matrix
and the Stirling matrices of the first kind and of the second kind via
Fibonacci matrix.

Recently, in [3], we gave the power formula of the generalized
Lah matrix L[z,y] and showed Lz,y] = FQ|z,y], where Qfz,y] =
[@i,j(z,¥))ij=1,2,..n Was the lower triangular matrix which was de-
fined by

qi,j(z’ y) = (xi (; : i)%' —z! (; : ?) (2 — 1)|

—gi? C B ?;) (i - 2)!) ’-J”T @)

From this matrix representation, several combinatorial identities in-
volving the Fibonacci numbers were obtained.

The purpose of this note is to provide another factorization of the
generalized Lah matrix: L[z,y] = R|z,y]F, where F is the Fibonacci
matrix and R[z,y] is the lower triangular matrix. Finally, we give
several interesting combinatorial identities involving the Fibonacci
numbers. These results were apparently missed in [3].
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We define the n x n matrix Rz, y] = [r; j(z,9)] (,5 =1,2,...,n)
as follows:

;s fi—=1\1 i—1 ]
rij(@y) =y | | . il SR ke
=27 ({2055t

= 2
_ C N 1) ﬁ) i, (5)
ie,
rij(%,y) = Lij(2,y) = Lij+1(2,9) = Lijea(z,y). (6)
Then we have
Theorem 1.
Llz,y] = R[z,y]F. (7)

Proof. Since the matrix F is invertible, then it suffices to prove
Lz,y|F~! = R[z,y]. Let F~1 = [f/,] be the inverse of F. By (3)
and the definition of L[z, y], we have

n 1
> Liw(z, o) ft; =Y Liklz,y) ft ;
k=1

k=5
Lij(z,9)f;; + Lije1(2, ) fj15 + Lige2(2,9) fiio
Lij(z,y) — Lij+1(2,y) — Lijro(z,y)
2i,j(,y),

as desired. a

We have the following interesting identities involving the Fi-
bonacci numbers from Theorem 1.

Theorem 2.

n—1\n! -
yr( )_ =ynFn_r+1+yn 1(,n2__n_y) E._,

r—1/r!
=2 (p—1\ y* n—k
+”’,§(k—1)k_:(1'k(k+1)y
(n—k)(n—k —1)
T kk+ 12k 2) yz) Feern (8
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In particular,

n—1\n! 9 n2/n-1

r—1 ol

1 n—k (n-k)(n—k-1)
*® (1 TkEk+1) k(k+1)2(k+2) ) Fe-rar ©)

and

~1\n!
(-1)" (’:_ 1) % = (1) Fperpr + (<1)*} (n? =+ 1) Py +

2/ 1 (—l)k n—k (n—k)n—-k-1)
+n!§j(k_1) k! <1+k(k+1)  k(k+12(k+2) )

X Feer1- (10)

Proof. From (5), we have
"'n.n(xa y)=2"Y", Tap-1= xn'yn—l(n2 -n—y);
and for k <n -2,
Tn (T, Y)
- - 2
s (R e e

_ nkfn—=1)1 n—k (n—k)(n-k-1)
= nle yk(k-1)ﬁ(1_k(k+1)y_ k(k + 1)2(k + 2) yz)'

From L[z,y] = R[z, y|F, it follows

nrfn—1\n! =
T yr< ) F = Ln,r(m) y) = Z Tn,k(m’ y)Fk—r+1

r—1 =
n—2

= "'n,n(my y)Fn—r+1 + Tn,n—l(x,y)Fn—r + z Tn,k(my y)Fk—r+1

=T

n—2
- n—1\n!
— z"y"Fn—r+1 + xnyn 1(n2 —n— y)Fn—r + } : xnyk (k ~ 1) F
k=r :

n—k (n—k)(n-k-1)
X (1 TkE+ DY T TRk + D2k +2) yz) Fie-r1-
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Dividing both sides of the equation by z”, the proof of (8) is com-
pleted. In (8), takingy =1 or y = -1, (9) and (10) can be obtained
respectively. O

Corollary 1.
n—2
_.n -1( 2 _ _ _ n-1
nly =y"F, + y* (n n y)Fn_1+n!kz_:1(k_1)
k
¥ n—k (n=k)n-k-1) , )
o (1 RFEEDY T Rk Rt ¥ ) e (D)
Specially,
e LR R o] V) Y (B
woE e o n-1 k-1)H\" " kk+1)
_(n—k)(n-k—l))
Wkt 2k+2) ) (12)
and

n—2
-n! = (-1)"F, +(-1)*! (n2 -n+ 1) Foi+n) (Z 1)
k=1 -1

) n—k (n—k)n—k-1)
k! (1+k(k+1)_ k(k + 1)2(k + 2) )Fk~ (13)

Proof. Take » = 1 in Theorem 2. a
Corollary 2.

1 -
§n!(n -1y =y "F, +y™ ! (n2 -n- y) F._2

2in-1 n—k
+'Z( ) ( kk+1)Y

_(n=K)n-k-1),
k(E+ 12k +2) ¥ )F" o 19
Specially,
! 1 1) F |7t-2 n—1
—n(n— )= n_1+(n —-n - ) n_g-l-n.g;; k—1
1 n—k (n—-k)(n—-k-1)
"E(l_k(kn)‘ k(k + 1)2(k + 2) )F"‘l (15)
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and

Il = 1) = (~1)"Facy + (1) (=0 + 1) Faca
n—2 n—1 (—l)k n-k
i, (k—l) K (1+ R(E+1)

(n—k)(n—k—1)
T Tk +1)2(k+2) ) By (16)

Proof. Take r = 2 in Theorem 2. O
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