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Abstract

The current paper deals with two special matrices T}, and W, related
to the Pascal, Vandermonde and Stirling matrices. As a result, various
properties of the entries of T, and Wy are obtained, including the gen-
erating functions, recurrence relations, and explicit expressions. Some
additional results are also presented.
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1. Introduction

Recently, the connection between the Pascal, Vandermonde and Stirling
matrices has been studied by M.E.A. El-Mikkawy [4, 5]. As a result, a new
matrix has been constructed, that is,

Tn=LpoD;'sn =PV},

where Ly is the n x n Pascal matrix, s, is the n x n Stirling matrix of
the first kind, P, is the n x n Pascal symmetric matrix, V,, is the n x n
Vandermonde matrix and D, is a n x n diagonal matrix. We will first give

the explicit definitions of these matrices. Fori,5 =1,2,--- ,n:
i—-1 . it+j-2
(Ln)ij = (j _ 1) v (8n)i =3(,7), (Pa)ij= ( ii 1 ) )

.. — gim1 o= 0, ifi#J,
(Va)ij =377, (D")‘J—{(z’—l)!, ifi=j,
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where s(i, j) are the Stirling numbers of the first kind.

It is clear that the matrix T}, is a lower triangular one, and it’s inverse
matrix W, = T;! = S,D,L;?, where Sy, is the n x n Stirling matrix of
the second kind. The explicit expressions of S, and L;;! are as follows:

Sy =56, (1% =0 (S, forig=12-m,

where S(i, j) are the Stirling numbers of the second kind. The matrices Tyo
and Wy will be listed in the Appendix.

In [4, 5], M.E.A. El-Mikkawy gave the algorithms to compute the el-
ements of these two matrices T}, and W, by using the theory of elemen-
tary symmetric functions. He also obtained some properties of T, Wy, by
MAPLE programming. However, [4, 5] didn’t provide more information
about T,,, W, and that to find the recurrence relations satisfied by the ele-
ments of these two matrices has been put forward as an open question (see
[5], p. 763).

A short commentary on the open question was written by us (7], from
which we noticed that the elements of Ty, and W,, would have some beau-
tiful properties, which also inspirited us to make a further study on these
elements.

In the sequel, we will denote the elements of the matrices T, and Wy, by
T(3,5) :== (Tn)i+1,j+1 and W(i,5) := (Whn)it1,541, respectively, for ¢,j =
0,1,---,n — 1. It should be noticed that the indices of the elements of
T, W, are different from those of [4, 5, 7], where in [4, 5, 7] the elements
were denoted by Tjj := (Tn)i; and Wy; = (Wy); for 4,5 = 1,2,---,n.
We find that the changes of the indices will bring great convenience for
computation.

This article is organized as follows. T'(¢,j), i.e., the elements of the
matrix T}, will be studied in Section 2. We will show that

T(i,5) = gelisd) = () 366 3),

where c(i,j) = (—1)*+9s(i, j) are the unsigned Stirling numbers of the first
kind. Some properties of T'(i, j) will be also found there. In Section 3, we
will study W (3, 7) in a similar way, and we will prove that

W (i,5) = (-1)"*7318(,5) .

Finally, in Section 4, some additional results related to T'(z, 5) and W (i, j)
are derived.

2. Properties satisfled by T'(¢, )
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Since T, = L, D;s,, we can find that

i+l \
76.9)= 3 (5 ) gyt +1

k=j+1

i .
=Z(2)%s(k+l,j+1).

k=j

Then, the ‘horizontal’ generating function of T'(i, j) can be reached:
g

ZT(Z,]):BJ Z(E ( ) 1!8(k+ 1,j + 1))z’

j>o j=0 k=j
) - i . k+1
=,§(z) ’:'z%s(k+1 j+ )zl = kz:o(':)’:'z s(k +1,0)z!?
— J= =
k+1 i )
=2_:() Zs(k+1l)w-,§(iik)(zzgl

£ (L)) (7).

where the Vandermonde convolution formula (cf., e.g., [6], Chapter 1) has
been used in the last step, and (z)r = z(x = 1)+ (z — k + 1).
We can get more information from the results above. In fact, since

i+z-1 z); 1 o s
R CHER (A EEEESECP R
i20 ’ T jzo
we have 1

T(Z’J) = ﬁc(i’j)a iyj P 0,
that is,

3 ( i) %s(k +1,j+1) = (-1)"* %di,i) ;

k=j k
where {(z); = z(z + 1) -+ (z + ¢ — 1). Then, the following theorem holds.
Theorem 1. (see [7]) The T'(i, ) have the following ‘horizontal’ generating
function:
> 16 = (571, ®

720
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and then ) 1
T(i,5) = el d) = (=)™ (i, 5). @)
Note that by setting z = 1 in (1), we obtain
> TG =1,
j20
which indicates that the matrix T}, is a stochastic one (see [4], p. 29) since
0 < T(i,j) £ 1, and by setting z = —1 in (1), we obtain
> (-1)T(,5) =0, fori>2.
j20

More important, by considering the combinatorial meaning of ¢(n, k), we
find that T(i,j) can be interpreted as the proportion of the number of
n-permutations with k-cycles to the total number of n-permutations.

Additionally, we find some other generating functions of T(¢,j), as
shown in the next theorem.

Theorem 2. The T'(3,j) have the following ‘double’ generating function:
> TG, )t = (1-8)77, 3)
4,20

and the following ‘vertical’ generating function:

S 16,9 = Sl g1 -1, @

i2j

and the following ‘horizontal’ generating function:
=
ZT(t,J)U' =5 T+ ku). ()
j20 k=1

Proof. For (3), a direct computation will deduce that =, ;5o T'(3, j)t'z? =
Y in0(Xjeo TG, 5)2)E = Tino (Fr2~1)tf = (1 —¢)~2. For (4), equate the
coefficients of 27 in 37 ;54(2;5 T(i,j)t)z? = (1-¢)~* = exp{(—z) log(1—
t)} = Xiso(-1)a log’(1 — t)/j!. For (5), replace = by »~! in (1) and
simplify. O
With the recurrence relation satisfied by the ¢(z, j):
C(i,j) = C(’I. - laJ - 1) + (7' - 1)0(2 - 1:j)a i’j > 1:
¢(i,0) = ¢(0,j) =0, except ¢(0,0) =1.

we can find the recurrence relation of T'(%, j) by means of (2).

524



Theorem 3. (see [7]) The T(i,j) satisfy the ‘triangular’ recurrence rela-
tion: .
R B , i-1_,. , .
T(Z:J):: ;T(Z—l,j—l)'f'-i—T(Z—l,]), i,j=>1, (6)
T(:,0)=T(0,5)=0, exceptT(0,0)=1.
Thus Theorem 3 enables us to generate the elements of the stochastic

lower triangular matrix T}, for specific n, by using the following recurrence
relation:

(Tn)i,j =3 (Tn)t— 1,j-1 + (T ); -1,j» 1,5 > 2,
(Tn)z,l = (Tn)l,J - 0, except (Tn)l,l =1 )

which solved the open question put forward in [5] (see also [7]).

Theorem 3 can be also proved according to the meaning of T'(i, j). And
by virtue of this theorem, we can get some special values:

1

. 1 | . —_
T(1,1)=;’ T(z,z):a, T(l,l-l)zz(i_g)!'

Besides the ‘triangular’ recurrence relation (6), the T'(, j) also satisfy
some other recurrence relations, which are given in the next two theorems.

Theorem 4. The T'(i,j) satisfy the ‘vertical’ recurrence relations:

i—j+1

76,)=3 Y, {TG=1Li-1), ™
i=1
14

TGj)= 3 TG~1-1,§-1). ®)
l'-'O

Proof. Let ¥(¢, z) = X0 T(3,5)t'z? = (1 — t)~*. For (7), equate the
coefficients of t'z7~! in 8% /8z = —log(1—¢)¥. For (8), use in an analogous
way 0¥ /6t = z(1 - t)~' . O

Theorem 5. The T'(i,j) satisfy the ‘horizontal’ recurrence relations:

G+)TGE+1,5+1)=3 C?)T(i, k), ©)
=j
TGE-1,7-1) =z'i (1-)* 973, k). (10)
k=j
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Proof. For (9), equate the coefficients of 27 in the expressions to the right
of (%) and (#x):

i+1f(i+z\ _i+1l is )
T 1. i)zi—
~ (i+l) E T@E+1,5)z = (z+1)§ T@E+1,5)=z

(z+x) ZT(W)(:::+ 1y = ZT(z ])g( )
Zz( )T(i,k)x .

120 k>!
And equating the coefficients of u*~7 in
S T -1, = e Y T )
= 1+ (z Du Z
will yield (10). 0
Making use of (2), we can obtain the value of T'(n, k) from the value of
s(n, k).
Theorem 6. The ‘ezact’ value of T'(n, k) is

T(n,k)
=(-1)"+* 1| hz_%( 1)k (: :ii::) (nz—nk——{ch) S(n—k+ h,h) (11)
—(_1)" 1 n-1+h\[ 2n—k \ (h—j)r—k+h
=(-1)"tk = Z_;”z__:o( 1)j+h< )(n k+h) (n_k—h)_h—!.
And then,

T(n,n— k) = Z (k +h) (';tg) S(k + hy h). (12)

h=0

Proof. By means of ([3], p. 216)

sk = 3 (1)'*(n ;I:)(n{nk—fh)sm—k+h,h)

0<h<n—k

and ([3], p. 204)

soh=5 5 o (e-ir=g ¥ (D o

0<3<k 0<i<k
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the exact value of T'(n, k) will be deduced. Then replace k by n—k in (11),
and the fact that

(D - ()

will lead us to (12). ]
Theorem 7. We have
T, k) = gy et Gt (D, =160 (2 26na(3), ) (18

1
= aBn,k(Ol, 2., (15)
where Y} stands for the exponential complete Bell polynomial ([3], p. 134),
$n(s) = Z;';l J~%, and By (21,22, -+) stands for the exponential partial
Bell polynomial ([3], p. 133).
Proof. In fact, by (1)

T(n,k)”: n+z-1 =("+z‘1)("+$—2)---(3:+1)x
s = (")

n n!

n-1
=Z(4+2)(1+3) - (14 =)+ —) = Sexp{j}; log(1 + z57)}

n—-1
=% exp{d_ D (-1)"'z*s71j} = % exp{)_ (-1)*"'z*s 7 ¢ni ()}

Jj=1 821 821
z zk
=2 {14+ 3" YelGomr (1), ~1%n-1(2), 26nea (3), ) 5}
n k!
E>1
Then equating the coefficients of =¥ will derive (14). And (15) is a direct
consequence of the fact that ([3], p. 135) c(n, k) = B, (0!,11,2,---). O
With (14), we can obtain the following special values:

1 1 1
T(n,2) = ~(1+ 5+ +—

1
)=5Hn—1,

=L el 1
T(m3) = g{Hio =~ (b gz + oo+ =),
T(n,4) = S {H3 | —3Hn_y(1+ = 4+ —L

7T g Vit ol T g2 +(n—1)2)

1 1
+2(1+2—3+”+GE——1)3)}’
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where H, denotes the harmonic number.

Theorem 8. We have

1 .. .
T(n,k) = = Z 2 in—k
n! . :
1<#H1 <i2 < <Kin_xSn—1
D> ——=r X 1
“n g2 gk—1 K riTe - T
1< <a< 2inor Sn—1 1927 Jk=1 ridratodrg=n 17277 TE

1,72, Tk 21
1.k q k2 1 kn

> W( ) (3) "'(;;)

k1+2k2+-+nkp=n
Eytkodetka=k, k1k2, kn>0

Proof. These are direct consequences of the following equations:

c(n, k) = Z i18g* in—k
1<) <iz < Kipg_p Sn—1

1 n! 1

=(n -1 Z — = Z —_—

.o 1 e
1<H1 <2< < Jp—1<n—1 J1J2° 7 Jk-1 k! ritratoetrp=n TiT2° Tk
71,72, "J‘kZl

| 1 ky 1 k2 1 kn

= 2 AR @ G

kl +2k2+...+nkn= n
ki+ko+-+kn=k, ky1,k2, kn20

(see, e.g., {1], p. 280, equation (8.11), equation (8.12); p. 291, equation
(8.22); p. 292, equation (8.24)). O

3. Properties satisfied by W (3, j)
Because T, W, = W, T,, = I, and T(3, ) = (—1)"+";ilis(i,j), then

In fact, we can find this from the following computation:

kD ~1)6TIHED = 1k = (=D~ 118~ 1,5 - 1)
=j

—(—py =1 ((z = :))| Z s(i—1,k=1)S(k — 1,5 — 1) = (=1)"* ’11)), 5 = 6

In the computation, the well known fact that s,S, = Sps, = I, has
been made use of and 4;; is the Kronecker delta (d;; = 1, §;; =0, ¢ # j).

k=j
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Since W, = T,;1 = S,D,L;!, then

i+1
W)= 3 st+1b- - (1)

-:i+1
—Z( 1)'°-J( )k'S(z+1 k+1),

k=j
and we obtain an identity related to the Stirling numbers of the second
kind
Z( 1)""( )k'S(z +1,k+1) = (-1)"9;18(4,7) .

k=j
In addition to this, the expression (13) of S(n, k) leads us at once to the

value of W (i, j):
W) = 3 (-1 HE

k=0
And we can also obtain another expression of W (i, j) from the fact that
([3), p. 135) S(¢,j) = B;;(1,1,1,---), that is,
W(i,j) = (-1)*j!Bi;(1,1,1,- ).

And, by appealing instead to the following equations related to S(z, 7) (see,
e.g., (1], p. 298, equation (8.34); p. 292, equation (8.23), equation (8.25)):

. . s B 1
SG= Y M=o 3
ri4raderi=i—j J: ri+reteodri=1 1°72 ‘7'
1‘1-"‘2.""1’;'20 71,72, ,7',>l
3! 19 172 14
= > 31!1'2!'—}(1') 5 G

J1+242++iji=i
Frt+iate+ji=3, jr.d2s i 20

we have

Wi, ) =(-1)"3 3T 1mer..gm
ri+ratetri=i=j
71,12, ,7; 20

AT O
ribratectry=i TIr2E Ty
1,72, r5>1

=(-1)*il

191 1 J3 1
)G G

Jz+2Jz+ +iji=i (]1"72
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Moreover, it’s easy to find that |W (3, 5)| = [(=1)**74!S(, j)| = 4'S(, 4)
has an explicit combinatorial meaning, that is, the number of ordered j-
partitions of [i] = {1,2,--,4}, and the matrix representation of |W (s, j)|,
which is called the factorial Stirling matrix, has already been studied (cf.,

eg, [2)).

By virtue of (16), we can compute the generating functions of the

W(i,j).

Theorem 9. The W (i, j) have the following ‘vertical’ generating function:

ZW("'J—:= )j’

i>20
and the following ‘double’ generating functions:
1

W(i a:’ =
;0 ( J) —z(l—et)
> W J)—— = "7,

,j20 i 5t

In addition, W (i, j) have an ‘horizontal’ generating function:

S Wi = vt
j=0 )

Proof. For (17), we have
Y W(i, )t /it = (-1Y31Y 0 SG,§)(—) /i

i>0 i>0

= (-1t -1 =(1-etY,

a7

(18)

(19)

(20)

and (18,.19) follow directly from (17). Eor (20), 2;.:0 Wi, j)(—z); /5! =
(-1)! Tjo(=1Y 56, i) ~2); = (-1) £} S, )(2); = (-1)'z".

Similarly, we have the generating functions for |W (¢, )|.

Theorem 10. The |W (i,5)| have the following generating functions:

S WG = € -1, S =

i>0 7=0

1,520 1,520

530
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We also get the recurrence relations satisfied by the W (i, j).

Theorem 11. (see [7]) The W (i, j) satisfy the ‘triangular’ recurrence re-
lation:

W(i,j)=jWi-1,j-1)-jW(i-1,5), ij>1, (21)
W(i,0) = W(0,5) =0, except W(0,0)=1.

For |W (i, 7)|, this can be written
W@EN =35WGE -1, - DI +5W(i-1,5)|. (22)
Proof. Since the Stirling numbers of the second kind S(3, j) satisfy

S5@,7)=58(-1,j-1)+75S(-1,4), 4521,
S(i,0) = S(0,7) =0, except $(0,0) =1,

then (21,22) will hold in light of (16). It should be noticed that (22) can
be also proved by the combinatorial meaning of |W (i, j)|. O

Theorem 12. The W (3, j) satisfy the ‘vertical’ recurrence relations:

i=j+1 ,
, ~1{t . .
W)= Y (-1 () W= 1,5-1), (23)
=1 l
i-j
wi,i) =305 ) We-1-ni-n. o
1=0
Proof. Let ;
B(t,z) = Y W, J)—'— = e2l=e™)
i,j20
i—1
For (23), equate the coefficients of — (Jz i in 89/8z = (1 — e~t)®. For
i1
(24), equate the coefficients of —— e ¢ NE; ‘ in 8®/0t = ze~t®. O
Theorem 13. The W (i, j) satisfy the ‘horizontal’ recurrence relation:
ot S
W(z,_;)=§j+l+1W(z+l,J+l+l). (25)

Proof. It suffices, by (21), to replace W(i + 1,5 + 1+ 1) of (25) by j +1 +
W(i,j+1)—W(,j+1+1)), and then to expand. (]
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4. Further results related to T'(3,j) and W (3, j)

Just like what we have done for the Stirling numbers of both kinds,
from the fact that T,,W, = W,Tn = I, we can obtain an inverse relation
related to T'(i,j) and W (i, 7), as the next theorem shows:

Theorem 14. Let {fn} and {gn} be two sequences of numbers, then we
have
fa=)_ W(n,k)g (26)
k

if and only if
gn =) T(n,k)fe. (27)
k

Proof. Although it’s easy to prove this inverse relation by matrix repre-
sentations, we will follow another way. Let f(t) = 3,50 fmt™/m! and

9(t) = Zmzo gmt™.
Since fp = Y, W(n, k)gx, then, using (17), we have

fm=3 %EW(m,k)gk =Y a Y Wim, k):_n"j!

m>0 k=0 k20 m>k
=) g(l-eHF=g(1-e™). (28)
k>0

Let u:=1—e™%, then t = —log(1 — u). In light of (4),

— 1k lopk(1 —
g9(u) = f(~log1—u)) =) £, 105! (1-u)

k>0

=Y fry T(nkpu" = > u"{z T(n, k) fe}, (29)

k>0  n>k n>0 k=0

which proves (27), if we identify the coefficients of u™ of the first and the
last member of (29). In a similar way, we can obtain (26) if (27) holds. O

Additionally, according to (2) and (16), some further results related to
T(i,7) and W(4,j) can be obtained.

Theorem 15. We have

S 7 nse k) =5 (52 1)- (30)

r=k

532



and

iT(]’ k)T (n - j,7) = (k-,:r)T(n:k'i'r), (31)
=0

Y (") WG, W (n —j,7) = Wn,k+7). (32)
=0 M

n
Proof. (30) follows from the fact that ([1}, p. 305) Zc(n,r)S(r, k) =

r=k

| /n —
v (n ;) . And, by virtue of the following two equations ([1], p. 322):

k' \k -

i=k
k+r _E (n) . .
(3740 =3 (5)sumst-in,
(31) and (32) will be deduced. a
Theorem 16. We have
= 1
—1)* =
kgo( D*T(n, k)Bi = — , (33)
= 1
2 1" (k) = ("B, (34)

where By, are the Bernoulli numbers.

Proof. (33) is a direct consequence of the fact that ([1}, p. 328)

Zn: s(n, k)Bk = '('—_l)n_n! ’

paard n+1

and (34) follows from (33) and Theorem 14, ]
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0 0 0
1 0 0
-1 2 0
1 -6 6
-1 14 -36
1 -30 150
-1 62 -—540
1 -126 1806
-1 254 —-5796

0
0
0
0

24
—240

1560
—8400

Wi =T =

0
0
0
0
0
120

—1800
16800

40824 —126000
1 -510 18150 —186480 834120 —1905120 2328480-—1451520 362880/
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