Remarks on two special matrices*

Weiping Wang a, † Tianming Wang a, b

^a Department of Applied Mathematics, Dalian University of Technology Dalian 116024, P.R.China

b Department of Mathematics, Hainan Normal University Haikou 571158, P.R.China

Abstract

The current paper deals with two special matrices T_n and W_n related to the Pascal, Vandermonde and Stirling matrices. As a result, various properties of the entries of T_n and W_n are obtained, including the generating functions, recurrence relations, and explicit expressions. Some additional results are also presented.

Keywords: Matrices; Stirling numbers; Generating functions; Recurrence relations; Combinatorial identities; Inverse relation

1. Introduction

Recently, the connection between the Pascal, Vandermonde and Stirling matrices has been studied by M.E.A. El-Mikkawy [4, 5]. As a result, a new matrix has been constructed, that is,

$$T_n = L_n D_n^{-1} s_n = P_n V_n^{-1}$$

where L_n is the $n \times n$ Pascal matrix, s_n is the $n \times n$ Stirling matrix of the first kind, P_n is the $n \times n$ Pascal symmetric matrix, V_n is the $n \times n$ Vandermonde matrix and D_n is a $n \times n$ diagonal matrix. We will first give the explicit definitions of these matrices. For $i, j = 1, 2, \dots, n$:

$$(L_n)_{ij} = \begin{pmatrix} i-1 \\ j-1 \end{pmatrix}, \quad (s_n)_{ij} = s(i,j), \quad (P_n)_{ij} = \begin{pmatrix} i+j-2 \\ i-1 \end{pmatrix},$$

$$(V_n)_{ij} = j^{i-1}, \quad (D_n)_{ij} = \begin{cases} 0, & \text{if } i \neq j, \\ (i-1)!, & \text{if } i = j, \end{cases}$$

^{*}It is supported by NSF of Hainan Province.

[†] E-mail addresses: wpingwang@yahoo.com (W.P. Wang), wangtm@dlut.edu.cn (T.M. Wang)

where s(i, j) are the Stirling numbers of the first kind.

It is clear that the matrix T_n is a lower triangular one, and it's inverse matrix $W_n = T_n^{-1} = S_n D_n L_n^{-1}$, where S_n is the $n \times n$ Stirling matrix of the second kind. The explicit expressions of S_n and L_n^{-1} are as follows:

$$(S_n)_{ij} = S(i,j), \quad (L_n^{-1})_{ij} = (-1)^{i-j} \binom{i-1}{j-1}, \quad \text{for } i,j=1,2,\cdots,n,$$

where S(i, j) are the Stirling numbers of the second kind. The matrices T_{10} and W_{10} will be listed in the Appendix.

In [4, 5], M.E.A. El-Mikkawy gave the algorithms to compute the elements of these two matrices T_n and W_n by using the theory of elementary symmetric functions. He also obtained some properties of T_n, W_n by MAPLE programming. However, [4, 5] didn't provide more information about T_n, W_n and that to find the recurrence relations satisfied by the elements of these two matrices has been put forward as an open question (see [5], p. 763).

A short commentary on the open question was written by us [7], from which we noticed that the elements of T_n and W_n would have some beautiful properties, which also inspirited us to make a further study on these elements.

In the sequel, we will denote the elements of the matrices T_n and W_n by $T(i,j) := (T_n)_{i+1,j+1}$ and $W(i,j) := (W_n)_{i+1,j+1}$, respectively, for $i,j = 0, 1, \dots, n-1$. It should be noticed that the indices of the elements of T_n, W_n are different from those of [4, 5, 7], where in [4, 5, 7] the elements were denoted by $T_{ij} := (T_n)_{ij}$ and $W_{ij} := (W_n)_{ij}$ for $i,j = 1,2,\dots,n$. We find that the changes of the indices will bring great convenience for computation.

This article is organized as follows. T(i,j), i.e., the elements of the matrix T_n will be studied in Section 2. We will show that

$$T(i,j) = \frac{1}{i!}c(i,j) = (-1)^{i+j}\frac{1}{i!}s(i,j),$$

where $c(i,j) = (-1)^{i+j} s(i,j)$ are the unsigned Stirling numbers of the first kind. Some properties of T(i,j) will be also found there. In Section 3, we will study W(i,j) in a similar way, and we will prove that

$$W(i,j) = (-1)^{i+j} j! S(i,j).$$

Finally, in Section 4, some additional results related to T(i, j) and W(i, j) are derived.

2. Properties satisfied by T(i, j)

Since $T_n = L_n D_n^{-1} s_n$, we can find that

$$T(i,j) = \sum_{k=j+1}^{i+1} \binom{i}{k-1} \frac{1}{(k-1)!} s(k,j+1)$$
$$= \sum_{k=j}^{i} \binom{i}{k} \frac{1}{k!} s(k+1,j+1).$$

Then, the 'horizontal' generating function of T(i, j) can be reached:

$$\begin{split} &\sum_{j\geq 0} T(i,j)x^j = \sum_{j=0}^i (\sum_{k=j}^i \binom{i}{k} \frac{1}{k!} s(k+1,j+1))x^j \\ &= \sum_{k=0}^i \binom{i}{k} \frac{1}{k!} \sum_{j=0}^k s(k+1,j+1)x^j = \sum_{k=0}^i \binom{i}{k} \frac{1}{k!} \sum_{l=1}^{k+1} s(k+1,l)x^{l-1} \\ &= \sum_{k=0}^i \binom{i}{k} \frac{1}{k!x} \sum_{l=0}^{k+1} s(k+1,l)x^l = \sum_{k=0}^i \binom{i}{i-k} \frac{(x)_{k+1}}{k!x} \\ &= \sum_{k=0}^i \binom{i}{i-k} \binom{x-1}{k} = \binom{i+x-1}{i}, \end{split}$$

where the Vandermonde convolution formula (cf., e.g., [6], Chapter 1) has been used in the last step, and $(x)_k = x(x-1)\cdots(x-k+1)$.

We can get more information from the results above. In fact, since

$$\sum_{j\geq 0} T(i,j)x^j = \binom{i+x-1}{i} = \frac{\langle x \rangle_i}{i!} = \frac{1}{i!} \sum_{j\geq 0} c(i,j)x^j ,$$

we have

$$T(i,j) = \frac{1}{i!}c(i,j), \quad i,j \geq 0,$$

that is,

$$\sum_{k=i}^{i} \binom{i}{k} \frac{1}{k!} s(k+1, j+1) = (-1)^{i+j} \frac{1}{i!} s(i, j) ,$$

where $\langle x \rangle_i = x(x+1) \cdots (x+i-1)$. Then, the following theorem holds.

Theorem 1. (see [7]) The T(i, j) have the following 'horizontal' generating function:

$$\sum_{j \ge 0} T(i,j)x^j = \binom{i+x-1}{i},\tag{1}$$

and then

$$T(i,j) = \frac{1}{i!}c(i,j) = (-1)^{i+j}\frac{1}{i!}s(i,j).$$
 (2)

Note that by setting x = 1 in (1), we obtain

$$\sum_{i>0} T(i,j) = 1,$$

which indicates that the matrix T_n is a stochastic one (see [4], p. 29) since $0 \le T(i,j) \le 1$, and by setting x = -1 in (1), we obtain

$$\sum_{j>0} (-1)^j T(i,j) = 0, \quad \text{for } i \ge 2.$$

More important, by considering the combinatorial meaning of c(n, k), we find that T(i, j) can be interpreted as the proportion of the number of n-permutations with k-cycles to the total number of n-permutations.

Additionally, we find some other generating functions of T(i, j), as shown in the next theorem.

Theorem 2. The T(i,j) have the following 'double' generating function:

$$\sum_{i,j\geq 0} T(i,j)t^i x^j = (1-t)^{-x}, \qquad (3)$$

and the following 'vertical' generating function:

$$\sum_{i \ge j} T(i,j)t^i = \frac{(-1)^j}{j!} \log^j (1-t) , \qquad (4)$$

and the following 'horizontal' generating function:

$$\sum_{j\geq 0} T(i,j)u^{i-j} = \frac{1}{i!} \prod_{k=1}^{i-1} (1+ku).$$
 (5)

Proof. For (3), a direct computation will deduce that $\sum_{i,j\geq 0} T(i,j)t^i x^j = \sum_{i\geq 0} (\sum_{j=0}^i T(i,j)x^j)t^i = \sum_{i\geq 0} \binom{i+x-1}{i}t^i = (1-t)^{-x}$. For (4), equate the coefficients of x^j in $\sum_{j\geq 0} (\sum_{i\geq j} T(i,j)t^i)x^j = (1-t)^{-x} = \exp\{(-x)\log(1-t)\} = \sum_{j\geq 0} (-1)^j x^j \log^j (1-t)/j!$. For (5), replace x by u^{-1} in (1) and simplify.

With the recurrence relation satisfied by the c(i, j):

$$c(i,j) = c(i-1,j-1) + (i-1)c(i-1,j), \quad i,j \ge 1,$$

$$c(i,0) = c(0,j) = 0, \quad \text{except } c(0,0) = 1.$$

we can find the recurrence relation of T(i,j) by means of (2).

Theorem 3. (see [7]) The T(i,j) satisfy the 'triangular' recurrence relation:

$$T(i,j) = \frac{1}{i}T(i-1,j-1) + \frac{i-1}{i}T(i-1,j), \quad i,j \ge 1,$$

$$T(i,0) = T(0,j) = 0, \quad \text{except } T(0,0) = 1.$$
(6)

Thus Theorem 3 enables us to generate the elements of the stochastic lower triangular matrix T_n , for specific n, by using the following recurrence relation:

$$(T_n)_{i,j} = \frac{1}{i-1}(T_n)_{i-1,j-1} + \frac{i-2}{i-1}(T_n)_{i-1,j}, \quad i, j \ge 2,$$

$$(T_n)_{i,1} = (T_n)_{1,j} = 0, \quad \text{except } (T_n)_{1,1} = 1,$$

which solved the open question put forward in [5] (see also [7]).

Theorem 3 can be also proved according to the meaning of T(i, j). And by virtue of this theorem, we can get some special values:

$$T(i,1) = \frac{1}{i}, \quad T(i,i) = \frac{1}{i!}, \quad T(i,i-1) = \frac{1}{2(i-2)!}.$$

Besides the 'triangular' recurrence relation (6), the T(i,j) also satisfy some other recurrence relations, which are given in the next two theorems.

Theorem 4. The T(i, j) satisfy the 'vertical' recurrence relations:

$$T(i,j) = \frac{1}{j} \sum_{l=1}^{i-j+1} \frac{1}{l} T(i-l,j-1), \qquad (7)$$

$$T(i,j) = \frac{1}{i} \sum_{l=0}^{i-j} T(i-l-1,j-1).$$
 (8)

Proof. Let $\Psi(t,x) = \sum_{i,j\geq 0} T(i,j)t^ix^j = (1-t)^{-x}$. For (7), equate the coefficients of t^ix^{j-1} in $\partial \Psi/\partial x = -\log(1-t)\Psi$. For (8), use in an analogous way $\partial \Psi/\partial t = x(1-t)^{-1}\Psi$.

Theorem 5. The T(i,j) satisfy the 'horizontal' recurrence relations:

$$(i+1)T(i+1,j+1) = \sum_{k=j}^{i} {k \choose j} T(i,k),$$
 (9)

$$T(i-1,j-1) = i \sum_{k=j}^{i} (1-i)^{k-j} T(i,k).$$
 (10)

Proof. For (9), equate the coefficients of x^j in the expressions to the right of (*) and (**):

$$\begin{split} \frac{i+1}{x} \binom{i+x}{i+1} &= \frac{i+1}{x} \sum_{j} T(i+1,j) x^{j} \stackrel{*}{=} (i+1) \sum_{j} T(i+1,j) x^{j-1} \\ &= \binom{i+x}{i} = \sum_{j} T(i,j) (x+1)^{j} = \sum_{j} T(i,j) \sum_{l=0}^{j} \binom{j}{l} x^{l} \\ &\stackrel{**}{=} \sum_{l>0} \sum_{k>l} \binom{k}{l} T(i,k) x^{l} \,. \end{split}$$

And equating the coefficients of u^{i-j} in

$$\sum_{j\geq 0} T(i-1,j)u^{i-1-j} = \frac{i}{1+(i-1)u} \sum_{j\geq 0} T(i,j)u^{i-j}$$

will yield (10).

Making use of (2), we can obtain the value of T(n, k) from the value of s(n, k).

Theorem 6. The 'exact' value of T(n,k) is

T(n,k)

$$= (-1)^{n+k} \frac{1}{n!} \sum_{h=0}^{n-k} (-1)^h \binom{n-1+h}{n-k+h} \binom{2n-k}{n-k-h} S(n-k+h,h)$$
 (11)

$$= (-1)^{n+k} \frac{1}{n!} \sum_{k=0}^{n-k} \sum_{j=0}^{h} (-1)^{j+h} \binom{h}{j} \binom{n-1+h}{n-k+h} \binom{2n-k}{n-k-h} \frac{(h-j)^{n-k+h}}{h!}.$$

And then,

$$T(n, n - k) = \frac{1}{n!} \sum_{k=0}^{k} {k-n \choose k+h} {k+n \choose k-h} S(k+h, h).$$
 (12)

Proof. By means of ([3], p. 216)

$$s(n,k) = \sum_{0 \le h \le n-k} (-1)^h \binom{n-1+h}{n-k+h} \binom{2n-k}{n-k-h} S(n-k+h,h)$$

and ([3], p. 204)

$$S(n,k) = \frac{1}{k!} \sum_{0 \le j \le k} (-1)^j \binom{k}{j} (k-j)^n = \frac{1}{k!} \sum_{0 \le i \le k} (-1)^{k-i} \binom{k}{i} i^n, \quad (13)$$

the exact value of T(n, k) will be deduced. Then replace k by n - k in (11), and the fact that

$$\binom{n-1+h}{k+h}\binom{k+n}{k-h} = (-1)^{k+h}\binom{k-n}{k+h}\binom{k+n}{k-h}$$

will lead us to (12).

Theorem 7. We have

$$T(n,k) = \frac{1}{n(k-1)!} Y_{k-1}(\zeta_{n-1}(1), -1!\zeta_{n-1}(2), 2!\zeta_{n-1}(3), \cdots)$$

$$= \frac{1}{n!} B_{n,k}(0!, 1!, 2!, \cdots),$$
(15)

where Y_k stands for the exponential complete Bell polynomial ([3], p. 134), $\zeta_n(s) = \sum_{j=1}^n j^{-s}$, and $B_{n,k}(x_1, x_2, \cdots)$ stands for the exponential partial Bell polynomial ([3], p. 133).

Proof. In fact, by (1)

$$\sum_{k} T(n,k)x^{k} = \binom{n+x-1}{n} = \frac{(n+x-1)(n+x-2)\cdots(x+1)x}{n!}$$

$$= \frac{x}{n}(1+x)(1+\frac{x}{2})\cdots(1+\frac{x}{n-2})(1+\frac{x}{n-1}) = \frac{x}{n}\exp\{\sum_{j=1}^{n-1}\log(1+xj^{-1})\}$$

$$= \frac{x}{n}\exp\{\sum_{j=1}^{n-1}\sum_{s\geq 1}(-1)^{s-1}x^{s}s^{-1}j^{-s}\} = \frac{x}{n}\exp\{\sum_{s\geq 1}(-1)^{s-1}x^{s}s^{-1}\zeta_{n-1}(s)\}$$

$$= \frac{x}{n}\{1+\sum_{k>1}Y_{k}(\zeta_{n-1}(1),-1!\zeta_{n-1}(2),2!\zeta_{n-1}(3),\cdots)\frac{x^{k}}{k!}\}.$$

Then equating the coefficients of x^k will derive (14). And (15) is a direct consequence of the fact that ([3], p. 135) $c(n,k) = B_{n,k}(0!, 1!, 2!, \cdots)$.

With (14), we can obtain the following special values:

$$T(n,2) = \frac{1}{n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n-1} \right) = \frac{1}{n} H_{n-1} ,$$

$$T(n,3) = \frac{1}{2n} \left\{ H_{n-1}^2 - \left(1 + \frac{1}{2^2} + \dots + \frac{1}{(n-1)^2} \right) \right\} ,$$

$$T(n,4) = \frac{1}{6n} \left\{ H_{n-1}^3 - 3H_{n-1} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{(n-1)^2} \right) + 2\left(1 + \frac{1}{2^3} + \dots + \frac{1}{(n-1)^3} \right) \right\} ,$$

where H_n denotes the harmonic number.

Theorem 8. We have

$$T(n,k) = \frac{1}{n!} \sum_{1 \le i_1 < i_2 < \dots < i_{n-k} \le n-1} i_1 i_2 \dots i_{n-k}$$

$$= \frac{1}{n} \sum_{1 \le j_1 < j_2 < \dots < j_{k-1} \le n-1} \frac{1}{j_1 j_2 \dots j_{k-1}} = \frac{1}{k!} \sum_{\substack{r_1 + r_2 + \dots + r_k = n \\ r_1, r_2, \dots, r_k \ge 1}} \frac{1}{r_1 r_2 \dots r_k}$$

$$= \sum_{\substack{k_1 + 2k_2 + \dots + nk_n = n \\ k_1 + k_2 + \dots + k_n = k}} \frac{1}{k_1 k_2 ! \dots k_n !} (\frac{1}{1})^{k_1} (\frac{1}{2})^{k_2} \dots (\frac{1}{n})^{k_n}.$$

Proof. These are direct consequences of the following equations:

$$c(n,k) = \sum_{1 \le i_1 < i_2 < \dots < i_{n-k} \le n-1} i_1 i_2 \dots i_{n-k}$$

$$= (n-1)! \sum_{1 \le j_1 < j_2 < \dots < j_{k-1} \le n-1} \frac{1}{j_1 j_2 \dots j_{k-1}} = \frac{n!}{k!} \sum_{\substack{r_1 + r_2 + \dots + r_k = n \\ r_1, r_2, \dots, r_k \ge 1}} \frac{1}{r_1 r_2 \dots r_k}$$

$$= \sum_{\substack{k_1 + 2k_2 + \dots + nk_n = n \\ k_1 + k_2 + \dots + k_n = k, \ k_1, k_2, \dots, k_n \ge 0}} \frac{n!}{k_1! k_2! \dots k_n!} (\frac{1}{1})^{k_1} (\frac{1}{2})^{k_2} \dots (\frac{1}{n})^{k_n}$$

(see, e.g., [1], p. 280, equation (8.11), equation (8.12); p. 291, equation (8.22); p. 292, equation (8.24)). \Box

3. Properties satisfied by W(i,j)

Because
$$T_n W_n = W_n T_n = I_n$$
 and $T(i,j) = (-1)^{i+j} \frac{1}{i!} s(i,j)$, then
$$W(i,j) = (-1)^{i+j} j! S(i,j). \tag{16}$$

In fact, we can find this from the following computation:

$$\sum_{k=j}^{i} (-1)^{(i-1)+(k-1)} \frac{1}{(i-1)!} s(i-1,k-1) (-1)^{(k-1)+(j-1)} (j-1)! S(k-1,j-1)$$

$$= (-1)^{i+j} \frac{(j-1)!}{(i-1)!} \sum_{k=j}^{i} s(i-1,k-1)S(k-1,j-1) = (-1)^{i+j} \frac{(j-1)!}{(i-1)!} \delta_{ij} = \delta_{ij},$$

In the computation, the well known fact that $s_n S_n = S_n s_n = I_n$ has been made use of and δ_{ij} is the Kronecker delta $(\delta_{ii} = 1, \delta_{ij} = 0, i \neq j)$.

Since $W_n = T_n^{-1} = S_n D_n L_n^{-1}$, then

$$W(i,j) = \sum_{k=j+1}^{i+1} S(i+1,k)(k-1)!(-1)^{k-j-1} {k-1 \choose j}$$
$$= \sum_{k=j}^{i} (-1)^{k-j} {k \choose j} k! S(i+1,k+1),$$

and we obtain an identity related to the Stirling numbers of the second kind

$$\sum_{k=i}^{i} (-1)^{k-j} \binom{k}{j} k! S(i+1,k+1) = (-1)^{i+j} j! S(i,j).$$

In addition to this, the expression (13) of S(n,k) leads us at once to the value of W(i,j):

$$W(i,j) = \sum_{k=0}^{j} (-1)^{i-k} {j \choose k} k^{i}.$$

And we can also obtain another expression of W(i,j) from the fact that ([3], p. 135) $S(i,j) = B_{i,j}(1,1,1,\cdots)$, that is,

$$W(i,j) = (-1)^{i+j} j! B_{i,j}(1,1,1,\cdots)$$
.

And, by appealing instead to the following equations related to S(i, j) (see, e.g., [1], p. 298, equation (8.34); p. 292, equation (8.23), equation (8.25)):

$$S(i,j) = \sum_{\substack{r_1 + r_2 + \dots + r_j = i - j \\ r_1, r_2, \dots, r_j \ge 0}} 1^{r_1} 2^{r_2} \cdots j^{r_j} = \frac{i!}{j!} \sum_{\substack{r_1 + r_2 + \dots + r_j = i \\ r_1, r_2, \dots, r_j \ge 1}} \frac{1}{r_1! r_2! \cdots r_j!}$$

$$= \sum_{\substack{j_1 + 2j_2 + \dots + ij_i = i \\ j_1 + j_2 + \dots + j_i = j, \ j_1, j_2, \dots, j_i \ge 0}} \frac{i!}{j_1! j_2! \cdots j_i!} (\frac{1}{1!})^{j_1} (\frac{1}{2!})^{j_2} \cdots (\frac{1}{i!})^{j_i},$$

we have

$$\begin{split} W(i,j) = & (-1)^{i+j} j! \sum_{\substack{r_1 + r_2 + \dots + r_j = i - j \\ r_1, r_2, \dots, r_j \geq 0}} 1^{r_1} 2^{r_2} \dots j^{r_j} \\ = & (-1)^{i+j} i! \sum_{\substack{r_1 + r_2 + \dots + r_j = i \\ r_1, r_2, \dots, r_j \geq 1}} \frac{1}{r_1! r_2! \dots r_j!} \\ = & (-1)^{i+j} i! \sum_{\substack{i_1 + 2i_2 + \dots + i_{j-i} \\ j_1, j_2, \dots, j_i}} \binom{j}{j_1, j_2, \dots, j_i} (\frac{1}{1!})^{j_1} (\frac{1}{2!})^{j_2} \dots (\frac{1}{i!})^{j_i} \,. \end{split}$$

Moreover, it's easy to find that $|W(i,j)| = |(-1)^{i+j}j!S(i,j)| = j!S(i,j)$ has an explicit combinatorial meaning, that is, the number of ordered j-partitions of $[i] = \{1, 2, \dots, i\}$, and the matrix representation of |W(i,j)|, which is called the factorial Stirling matrix, has already been studied (cf., e.g., [2]).

By virtue of (16), we can compute the generating functions of the W(i,j).

Theorem 9. The W(i,j) have the following 'vertical' generating function:

$$\sum_{i>0} W(i,j) \frac{t^i}{i!} = (1 - e^{-t})^j, \qquad (17)$$

and the following 'double' generating functions:

$$\sum_{i,j>0} W(i,j) \frac{t^i}{i!} x^j = \frac{1}{1 - x(1 - e^{-t})},$$
 (18)

$$\sum_{i,j\geq 0} W(i,j) \frac{t^i}{i!} \frac{x^j}{j!} = e^{x(1-e^{-t})}.$$
 (19)

In addition, W(i, j) have an 'horizontal' generating function:

$$\sum_{i=0}^{i} W(i,j) \frac{\langle -x \rangle_j}{j!} = (-1)^i x^i.$$
 (20)

Proof. For (17), we have

$$\sum_{i\geq 0} W(i,j)t^i/i! = (-1)^j j! \sum_{i\geq 0} S(i,j)(-t)^i/i!$$
$$= (-1)^j (e^{-t} - 1)^j = (1 - e^{-t})^j,$$

and (18,19) follow directly from (17). For (20),
$$\sum_{j=0}^{i} W(i,j) \langle -x \rangle_j / j! = (-1)^i \sum_{j=0}^{i} (-1)^j S(i,j) \langle -x \rangle_j = (-1)^i \sum_{j=0}^{i} S(i,j) (x)_j = (-1)^i x^i$$
.

Similarly, we have the generating functions for |W(i,j)|.

Theorem 10. The |W(i,j)| have the following generating functions:

$$\begin{split} \sum_{i \geq 0} |W(i,j)| \frac{t^i}{i!} &= (e^t - 1)^j \,, \quad \sum_{j = 0}^i |W(i,j)| \frac{(x)_j}{j!} = x^i \,, \\ \sum_{i,j \geq 0} |W(i,j)| \frac{t^i}{i!} x^j &= \frac{1}{1 - x(e^t - 1)} \,, \quad \sum_{i,j \geq 0} |W(i,j)| \frac{t^i}{i!} \frac{x^j}{j!} &= e^{x(e^t - 1)} \,. \end{split}$$

We also get the recurrence relations satisfied by the W(i, j).

Theorem 11. (see [7]) The W(i,j) satisfy the 'triangular' recurrence relation:

$$W(i,j) = jW(i-1,j-1) - jW(i-1,j), \quad i,j \ge 1,$$

$$W(i,0) = W(0,j) = 0, \quad \text{except } W(0,0) = 1.$$
(21)

For |W(i,j)|, this can be written

$$|W(i,j)| = j|W(i-1,j-1)| + j|W(i-1,j)|.$$
(22)

Proof. Since the Stirling numbers of the second kind S(i, j) satisfy

$$S(i,j) = S(i-1,j-1) + jS(i-1,j), \quad i,j \ge 1,$$

 $S(i,0) = S(0,j) = 0, \quad \text{except } S(0,0) = 1,$

then (21,22) will hold in light of (16). It should be noticed that (22) can be also proved by the combinatorial meaning of |W(i,j)|.

Theorem 12. The W(i,j) satisfy the 'vertical' recurrence relations:

$$W(i,j) = \sum_{l=1}^{i-j+1} (-1)^{l-1} {i \choose l} W(i-l,j-1), \qquad (23)$$

$$W(i,j) = \sum_{l=0}^{i-j} (-1)^l j \binom{i-1}{l} W(i-l-1,j-1).$$
 (24)

Proof. Let

$$\Phi(t,x) = \sum_{i,j\geq 0} W(i,j) \frac{t^i}{i!} \frac{x^j}{j!} = e^{x(1-e^{-t})}.$$

For (23), equate the coefficients of $\frac{t^i}{i!} \frac{x^{j-1}}{(j-1)!}$ in $\partial \Phi / \partial x = (1-e^{-t})\Phi$. For (24), equate the coefficients of $\frac{t^{i-1}}{(i-1)!} \frac{x^j}{j!}$ in $\partial \Phi / \partial t = xe^{-t}\Phi$.

Theorem 13. The W(i, j) satisfy the 'horizontal' recurrence relation:

$$W(i,j) = \sum_{l=0}^{i-j} \frac{1}{j+l+1} W(i+1,j+l+1).$$
 (25)

Proof. It suffices, by (21), to replace W(i+1, j+l+1) of (25) by j+l+1 W(i, j+l) - W(i, j+l+1), and then to expand.

4. Further results related to T(i,j) and W(i,j)

Just like what we have done for the Stirling numbers of both kinds, from the fact that $T_nW_n = W_nT_n = I_n$, we can obtain an inverse relation related to T(i,j) and W(i,j), as the next theorem shows:

Theorem 14. Let $\{f_n\}$ and $\{g_n\}$ be two sequences of numbers, then we have

$$f_n = \sum_k W(n, k) g_k \tag{26}$$

if and only if

$$g_n = \sum_k T(n,k) f_k. \tag{27}$$

Proof. Although it's easy to prove this inverse relation by matrix representations, we will follow another way. Let $f(t) = \sum_{m\geq 0} f_m t^m/m!$ and $g(t) = \sum_{m\geq 0} g_m t^m$.

Since $f_n = \sum_k W(n, k)g_k$, then, using (17), we have

$$f(t) = \sum_{m \ge 0} \frac{t^m}{m!} \sum_{k=0}^m W(m, k) g_k = \sum_{k \ge 0} g_k \sum_{m \ge k} W(m, k) \frac{t^m}{m!}$$
$$= \sum_{k \ge 0} g_k (1 - e^{-t})^k = g(1 - e^{-t}). \tag{28}$$

Let $u := 1 - e^{-t}$, then $t = -\log(1 - u)$. In light of (4),

$$g(u) = f(-\log(1-u)) = \sum_{k\geq 0} f_k \frac{(-1)^k \log^k (1-u)}{k!}$$
$$= \sum_{k\geq 0} f_k \sum_{n\geq k} T(n,k) u^n = \sum_{n\geq 0} u^n \{\sum_{k=0}^n T(n,k) f_k\},$$
(29)

which proves (27), if we identify the coefficients of u^n of the first and the last member of (29). In a similar way, we can obtain (26) if (27) holds. \Box

Additionally, according to (2) and (16), some further results related to T(i,j) and W(i,j) can be obtained.

Theorem 15. We have

$$\sum_{r=k}^{n} T(n,r)S(r,k) = \frac{1}{k!} \binom{n-1}{k-1},$$
(30)

and

$$\sum_{j=0}^{n} T(j,k)T(n-j,r) = {k+r \choose k}T(n,k+r), \qquad (31)$$

$$\sum_{j=0}^{n} \binom{n}{j} W(j,k) W(n-j,r) = W(n,k+r).$$
 (32)

Proof. (30) follows from the fact that ([1], p. 305) $\sum_{r=k}^{n} c(n,r)S(r,k) = \frac{n!}{k!} \binom{n-1}{k-1}$. And, by virtue of the following two equations ([1], p. 322):

$$\binom{k+r}{k} s(n,k+r) = \sum_{j=k}^{n-r} \binom{n}{j} s(j,k) s(n-j,r) ,$$

$$\binom{k+r}{k} S(n,k+r) = \sum_{j=k}^{n-r} \binom{n}{j} S(j,k) S(n-j,r) ,$$

(31) and (32) will be deduced.

Theorem 16. We have

$$\sum_{k=0}^{n} (-1)^k T(n,k) B_k = \frac{1}{n+1}, \qquad (33)$$

$$\sum_{k=0}^{n} \frac{1}{k+1} W(n,k) = (-1)^{n} B_{n}, \qquad (34)$$

where B_n are the Bernoulli numbers.

Proof. (33) is a direct consequence of the fact that ([1], p. 328)

$$\sum_{k=0}^{n} s(n,k)B_k = \frac{(-1)^n n!}{n+1},$$

and (34) follows from (33) and Theorem 14.

Acknowledgments

The authors would like to thank the anonymous referee for his (her) valuable suggestions.

References

- [1] Charalambos A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [2] G.-S. Cheon, J.-S. Kim, Factorial Stirling matrix and related combinatorial sequences, Linear Algebra Appl. 357 (2002) 247-258.
- [3] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
- [4] M.E.A. El-Mikkawy, On a connection between the Pascal, Vander-monde and Stirling matrices-I, Appl. Math. Comput. 145 (1) (2003) 23-32.
- [5] M.E.A. El-Mikkawy, On a connection between the Pascal, Vandermonde and Stirling matrices-II, Appl. Math. Comput. 146 (2-3) (2003) 759-769.
- [6] J. Riordan, Combinatorial Identities, Reprint of the 1968 original, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979.
- [7] W.P. Wang, T.M. Wang, Commentary on an open question, Appl. Math. Comput. accepted.

Appendix

					$W_{10}=2$	$T_{10}^{-1} =$			
/ 1	0	0	0	0	0	0	0	0	0/
0	1	0	0	0	0	0	0	0	0
0	-1	2	0	0	0	0	0	0	0
0	1	-6	6	0	0	0	0	0	0
0	-1	14	-36	24	0	0	0	0	0
0	1	-30	150	-240	120	0	0	0	0
0	-1	62	-540	1560	-1800	720	0	0	0
0	1	-126	1806	-8400	16800	-15120	5040	0	0
0	-1	254	-5796	40824	-126000	191520	-141120	40320	0
o	1	-510	18150	-186480	834120	-1905120	2328480	-1451520	362880