A note on B-T unitals in PG(2, ¢?)
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Abstract

A new construction of a B-T unital using Hermitian curves and
certain hypersurfaces of PG(3,¢?) is presented. Some properties of
an algebraic curve containing all points of a B-T unital are also ex-
amined.
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1 Introduction

A classical unital H in PG(2,¢?) is the set of all ¢ + 1 points of a non-
degenerate hermitian curve H. A unital in PG(2, ¢2) is non-classical if it
is not projectively equivalent to H. The known non-classical unitals are
those constructed by Buekenhout and Metz in 1974, see 3, 10|, using the
Bruck-Bose representation of PG(2,¢%) in PG(4, q) and some properties of
spreads, ovoids (and, in particular, quadrics).

In [1], a new costruction of non-classical unitals is described; the key idea
is realized within PG(2, ¢2), and uses hermitian curves and either quadratic
transformations or certain birational transformations. The resulting non-
classical unital is either a Buekenhout-Mets unital or a Buekenhout-Tits
unital (a B-M unital or a B-T unital for short). For generalities on unitals
in projective planes the reader is referred to [2, 5, 6]. In [1] a method is also
presented to construct a non classical B-M unital starting from PG(3, ¢?)
and using a quadratic cone. '

In this paper, it is shown that above method realized in PG(3, ¢?), also
works for B-T unitald, provided that quadratic cones are replaced by certain
hypersurfaces. "
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2 Construction

We recall the representation of a B-T unital in PG(2, %), where g is an odd
power of 2. Fix a projective frame in PG(2,¢%) with homogeneous coor-
dinates (zo, z1,%2), and consider the affine plane AG(2, g?) whose infinite
line £, has equation zo = 0. Then AG(2,4¢?) has affine coordinates (z,y)
where = = z, /%0, y = T2/7o s0 that X = (0,1,0) and Y, = (0,0,1) are
the infinite points of the horizontal and vertical lines, respectively.

Take € € GF(g?)\GF(g) such that £2+¢+6 = 0, for some § € GF(g)\{1}
with Tr () = 1. Here, Tr stands for the trace function GF(gq) — GF(2).
Then £29+£9+8 = 0. Therefore, (¢9+¢)2+(e?+¢) = 0, whence e9+e+1 = 0.

Moreover, if ¢ = 2¢, with e an odd integer, then

ole+1)/2
g.T—T

is an automorphism of GF(g).
In the above notation, the point-set

Ue = {(1,5 + te,(s7F2 + t° + st)e) + r|r,5,t € GF(q)} U {Yo}, (1)

is a B-T unital in PG(2,4%). Conversely, every B-T unital may be repre-
sented as U, for some choice of ; see [4].

Now, let Xo, X1, X2, X3 denote homogeneous coordinates in PG(3, a3).
and consider the affine space AG(3,¢?) whose plane at infinity has equa-
tion Xo = 0. Then AG(3,4¢?) has affine coordinates (X,Y, Z) where X =
X1/ Xo, Y = X3/ Xo, Z = X2/Xo.

For a given b € GF(q?) \ GF(q), let H be the Hermitian curve

H = {(1,2,b27*" +r)|z € GF(¢?),r € GF(q)} U {Yeo}

in PG(2, ¢%). Fix abasis {1, ¢} for GF(q%) over GF(q) as above and consider
the map ¢ : H — PG(3, ¢%) which transforms the point P = (1, z,bz?*! +r)
into the point ¢(P) = (1,2, [((z? + z)e + z)°*2 + (27 + z)7 + ((2? + z)e +
z)(z9 + z))e + bz?+!, bz?*! + 1) and Yo, into ¢(Yeo) = (0,0,0,1).

The map ¢ is injective, thus, the set ¢() consists of g%+ 1 points lying
on the cone € of affine equation

Y = [(X9+X)e+X) 2+ (X9+X)7 +((XI+X)e+ X) (X I+ X)|e+bX 9+,

The point Q = (0,0, 1,1) does not lie on the cone €; hence, the projection
p from Q to the plane 7 : Y = 0 is well defined. The point ¢(Yoo) is on 7
thus we get p(0,0,0,1) = (0,0,0,1).

For any (z,r) € GF(g?) x GF(q), set

az = [((z? + 2)e + 2)°*2 + (27 + 2)° + (27 + 2)e + z)(2? + z)]e + bz?™!
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and
P., = (1,z,04,bz7%! 4 7).

The line P; @ has point set
{1,200 + X, 527! + 7+ X)X € GF(¢%)} U {(0,0,1,1)}

and intersects the plane 7 at p(P:,) = (1,2,0,bz9t! + 7 + a;). We
are going to show that no 2-secant lines of ¢(’H) pass through Q. Let
P, (1, xl,a_.,l,bxl + 71) and Pp, ., (1, :z:g,o:z...,bx2 + r2) be two dis-
tinct points of ¢(H). The line Py, r, Pz, r, is the point set

{(A+1, 214+Ax2, g, +A0gy, (T 4228t 47 +2r) A € GF(¢*)}{ Pryre }-
The point at infinity of the line Py, r, Pz, r, is the point
Poo = (0,21 + 2,00, + 0z, b(z{™ + 2§t 41y + 1)

IfP,=0Q then T1 = T3 and oz, +az, # 0, which is impossible. Therefore,
lo(¢(H))| = ¢* + 1. Writing = = s + te, where s,t € GF(q), we have

t=1z2%+1z, (2)
s=z+ (27 +z)e (3)
and hence

P(Prr) = (1,8 +t€,0,(s”*2 + 17 + st)e + 7).

Therefore it is possible to choose homogeneous coordinates for the plane 7
in such a way as p(¢(H)) turns out to be a B-T unital in 7.

3 Algebraic curves containing all points of a
B-T unital in PG(2,¢?)

Let U, be the Buekenhout-Tits unital (1) of PG(2,¢?). Setting z = s + te
and y = (572 + t7 + st)e + r we have (2), (3) and

Substituting (2) and (3) in (4) gives
Y+y=[z+(=?+ x)e]°+2 + (29 +2)° + (x2q + :82)6 + 29t 4 22, (5)



Hence a point P(1,z,y) is on U if and only if its coordinates satisfy (5). Let
C. denote the algebraic plane curve with affine equation (5) and consider
the birational transform of AG(2,¢?) into itself

v (.'z:,y) — (m’y + (ea _*_ea+2)zqa'+2 + ec‘r-f-2xq(a'+2) +z°% + (1 + e)m2).

Basic facts on rational transformations of projective planes are found in
[9, Section 3.3]. The curve C; is transformed by < into the non—degenerate
Hermitian curve of equation

H:y?+y+z9t =0

Thus we have the following

Theorem 3.1. The algebraic curve C. is birationally equivalent over GF(q?)
to a non—degenerate Hermitian curve.

Remark 3.2. Algebraic curves over finite fields may be used to obtain good
families of codes with prescribed parameters. The general construction
technique for linear codes from algebraic curves was introduced by Goppa
in [7]. These codes are called algebraic-geometry.

Amongst all algebraic-geometry codes, of particular interest are those
associated with maximal curves, since they may have length and minimum
distance as large as possible for a given genus g. The parameters of linear
codes arising from a Hermitian curve by Goppa’s method were computed
in [11).

It is interesting to see if an algebraic curve of low degree whose rational
points are the same as those of a non-classical unitals also provides good
codes. In [1] it is noted that the algebraic-geometry codes arising from
a Hermitian curve H of PG(2,q?), and those arising from an irreducible
algebraic curve of degree 2¢ containing all the points of a non—classical
B-M unital are the same.

Since the algebraic-geometric codes are determined by the function fields
of the corresponding algebraic curves and the function fields of two bi-
rationally equivalent plane curves are isomorphic, Theorem 3.1 implies
that also algebraic-geometry codes arising from a Hermitian curve H of
PG(2,4¢?) and those arinsing from the irreducible curve C. are the same.
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