Uniformly pair-bonded trees*

Wai Chee Shiu^{a†}, Xue-gang Chen^b, Wai Hong Chan^a

^aDepartment of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China. E-mail: wcshiu@hkbu.edu.hk (W.C. Shiu), dchan@hkbu.edu.hk (W.H. Chan)

^bDepartment of Mathematics, North China Electric Power University, Beijing 102206, P.R. China.

Abstract

Let G=(V(G),E(G)) be a graph with $\delta(G)\geq 1$. A set $D\subseteq V(G)$ is a paired-dominating set if D is a dominating set and the induced subgraph G[D] contains a perfect matching. The paired domination number of G, denoted by $\gamma_p(G)$, is the minimum cardinality of a paired-dominating set of G. The paired bondage number, denoted by $b_p(G)$, is the minimum cardinality among all sets of edges $E'\subseteq E$ such that $\delta(G-E')\geq 1$ and $\gamma_p(G-E')>\gamma_p(G)$. For any $b_p(G)$ edges $E'\subseteq E$ with $\delta(G-E')\geq 1$, if $\gamma_p(G-E')>\gamma_p(G)$, then G is called uniformly pair-bonded graph. In this paper, we prove that there exists uniformly pair-bonded tree T with $b_p(T)=k$ for any positive integer k. Furthermore, we give a constructive characterization of uniformly pair-bonded trees.

Keywords : Domination number, paired-domination num-

ber, paired bondage number, uniformly pair-

bonded graph.

AMS 2000 MSC: 05C69

1 Introduction

In this paper, we consider finite undirected simple connected graphs. For all undefined concepts and notations in this paper the reader is referred to [1]. By V(G) and E(G), we mean the vertex set and the edge set of a graph G, respectively. Let n(G) = |V(G)| and m(G) = |E(G)|. We write G[S] for the subgraph of G induced by $S \subseteq V(G)$.

^{*}This work is partially supported by GRF, Research Grant Council of Hong Kong; FRG, Hong Kong Baptist University; and Doctoral Research Grant of North China Electric Power University (200722026).

[†]Corresponding author

A set $S \subseteq V(G)$ is a dominating set of G if each vertex of $V(G) \setminus S$ is adjacent to at least one vertex in S. The cardinality of a minimum dominating set is called the *domination number* of G, denoted by $\gamma(G)$.

The bondage number b(G) of a nonempty graph G is the minimum cardinality among all sets of edges $E' \subseteq E$ for which $\gamma(G-E') > \gamma(G)$. Bondage in graphs was introduced by Fink et al. [3] and further studied for example in [4, 6].

A graph is called *uniformly bonded*, which was introduced by Hartnell and Rall in [4], if it has bondage number b and the deletion of any b edges results in a graph with increased domination number. Let P_n and C_n denote a path and a cycle with n vertices, respectively. Hartnell and Rall [4] obtained the following result.

Theorem 1.1 The uniformly bonded graphs with b(G) = 2 are C_3 and P_4 . The unique uniformly bonded graph with b(G) = 3 is C_4 . There are no uniformly bonded graphs with b(G) > 3.

A dominating set S is called a paired-dominating set if its induced subgraph contains a perfect matching. The cardinality of a minimum paired-dominating set is the paired-domination number, denoted by $\gamma_p(G)$. The paired-domination number was introduced by Haynes and Slater [5] and further studied in [7, 2, 8]. A minimum paired-dominating set of G is also called a γ_n -set of G.

The paired bondage number of G with $\delta(G) \geq 1$, denoted by $b_p(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G - E') \geq 1$ and $\gamma_p(G - E') > \gamma_p(G)$. In particular, it was defined that $b_p(K_{1,n}) = 0$ for all star graphs $K_{1,n}$. The paired bondage number was introduced by Raczek in [7]. A graph is called uniformly pair-bonded if it has paired bondage number $b_p(G)$, and for any subset $E' \subseteq E$ with $\delta(G - E') \geq 1$ and $|E'| = b_p(G)$, the deletion of E' results in a graph with increased paired-domination number. Raczek [7] obtained the following result.

Theorem 1.2 For any non-negative integer k, there exists a tree with $b_p(T) = k$.

2 Main results

In this paper, we prove that there exists a uniformly pair-bonded tree T with $b_p(T) = k$ for any positive integer k. Furthermore, we give a constructive characterization of uniformly pair-bonded trees.

Theorem 2.1 Let G be a uniformly pair-bonded graph. Then $b_p(G) > m(G) - n(G) + \frac{\gamma_p(G)}{2}$.

Proof: Let S be a γ_p -set of G, and let $E(S, V \setminus S)$ denote the set of edges between S and $V \setminus S$. Define $E_1 \subseteq E(S, V \setminus S)$ such that for each vertex $v \in V - S$, v is incident with exactly one edge of E_1 . So $|E_1| = |V \setminus S| = n - \gamma_p(G)$.

Let $E_2 = E(S, V \setminus S) \setminus E_1$. Then $|E(S, V \setminus S)| = |E_1| + |E_2|$. Let M be a perfect matching of G[S] and $E_3 = E(G[S]) \setminus M$. Then $|E(G[S])| = |M| + |E_3| = \frac{|S|}{2} + |E_3|$. By definition, we have

$$\sum_{v \in V \setminus S} d(v) = 2|E(G[V \setminus S])| + |E(S, V \setminus S)| = 2|E(G[V \setminus S])| + |E_1| + |E_2|$$

and

$$\sum_{v \in S} d(v) = 2|E(G[S])| + |E(S, V \setminus S)| = 2(\frac{|S|}{2} + |E_3|) + |E_1| + |E_2|.$$

Combining the above equalities, we have $m(G) = |E(G[V \setminus S])| + \frac{|S|}{2} + |E_1| + |E_2| + |E_3|$. So,

$$|E(G[V \setminus S])| + |E_2| + |E_3| = m(G) - |E_1| - \frac{\gamma_p(G)}{2}.$$

Thus,

$$|E(G[V\setminus S])\cup E_2\cup E_3|=m(G)-n(G)+\frac{\gamma_p(G)}{2}.$$

For any edge set $E \subseteq E(G[V \setminus S]) \cup E_2 \cup E_3$, we have $\delta(G - E) \ge 1$ and $\gamma_p(G - E) \le \gamma_p(G)$. Since G is a uniformly pair-bonded graph, $b_p(G) > |E(G[V \setminus S]) \cup E_2 \cup E_3| = m(G) - n(G) + \frac{\gamma_p(G)}{2}$.

Corollary 2.2 Let T be a uniformly pair-bonded tree. Then

$$b_p(T)>\frac{\gamma_p(T)}{2}-1.$$

Let G be a graph. The open neighborhood of $v \in V(G)$ in G, denoted by $N_G(v)$, is the set $\{u \in V(G) \mid uv \in E(G)\}$. The closed neighborhood of v in G, denoted by $N_G[v]$, is the set $N_G(v) \cup \{v\}$. The vertex v is a leaf if $|N_G(v)| = 1$. If v is adjacent to a leaf, v is called a support vertex.

For any tree T, let L(T) denote the set of leaves of T. If $diam(T) \ge 4$, let $P = v_1v_2v_3v_4\cdots v_t$ be a longest path in T. Define the edge sets $E_3 = \{uv_3 \mid u \in N_T(v_3), \ u \notin \{v_2, v_4\} \cup L(T)\}$ and $E_4 = \{uv_4 \mid u \in N_T(v_4), \ u \notin \{v_3\} \cup L(T)\}$. (We shall keep these notations up to the end of the proof of Theorem 2.6).

Proposition 2.3 Let T be a tree with $diam(T) \geq 4$. Suppose that v_3 is not a support vertex and v_4 is a support vertex. Let $F = T - v_3v_4$. Let F_1 and F_2 denote the components of F containing v_3 and v_4 , respectively. Then $b_p(T) \leq 1 + b_p(F_2)$.

Proof: Let E be a minimum edge set of F_2 such that $\delta(F_2 - E) \ge 1$ and $\gamma_p(F_2 - E) > \gamma_P(F_2)$. It is obvious that $\gamma_p(T) \le \gamma_p(F_1) + \gamma_p(F_2)$. So, $\gamma_p(T) \le \gamma_p(F_1) + \gamma_p(F_2) < \gamma_p(F_1) + \gamma_p(F_2 - E) = \gamma_p(T - (\{v_3v_4\} \cup E))$. Hence $b_p(T) \le 1 + b_p(F_2)$.

Lemma 2.4 Let T be a tree with $diam(T) \ge 5$. If v_4 is not a support vertex, then $b_p(T) \le 1 + |E_3| + |E_4|$.

Proof: Let $F = T - (\{v_2v_3\} \cup E_3 \cup E_4)$. Then F has no isolated vertices. Let F_1 and F_2 denote the components of F containing v_2 and v_3 , respectively. Define $F_3 = F - (F_1 \cup F_2)$. It is obvious that

$$\begin{split} \gamma_p(T) &\leq \gamma_p(F_1 \cup F_2 \cup \{v_2v_3\}) + \gamma_p(F_3) = 2 + \gamma_p(F_3) \\ &< 4 + \gamma_p(F_3) = \gamma_p(F_1) + \gamma_p(F_2) + \gamma_p(F_3) = \gamma_p(F) \\ &= \gamma_p(T - (\{v_2v_3\} \cup E_3 \cup E_4)). \end{split}$$

Hence $b_p(T) \le 1 + |E_3| + |E_4|$.

Lemma 2.5 Let T be a tree with $diam(T) \ge 4$. If both v_3 and v_4 are support vertices, then $b_p(T) \le 2 + |E_3|$.

Proof: Let $F = T - v_3 v_4$. Then F has no isolated vertices. Let F_1 and F_2 denote the components of F containing v_3 and v_4 , respectively. It is obvious that $\gamma_p(T) \leq \gamma_p(F_1) + \gamma_p(F_2)$. Let S be a γ_p -set of T, and let M be a perfect matching of T[S]. Since v_2, v_3 and v_4 are support vertices of T, it follows that $v_2, v_3, v_4 \in S$.

If $v_3v_4 \in M$, then there exists a vertex $u \in N(v_2) \cap L(T)$ such that $uv_2 \in M$. Say $v \in N(v_4) \cap L(T)$. Then $v \notin S$. Let $S' = (S \setminus \{u\}) \cup \{v\}$. Then S' is a γ_p -set of T and v_3v_4 does not belong to any perfect matching of T[S']. So, without loss of generality, we may assume that $v_3v_4 \notin M$. Then $S \cap V(F_1)$ and $S \cap V(F_2)$ are paired-dominating sets of F_1 and F_2 , respectively. Hence, $\gamma_p(F_1) \leq |S \cap V(F_1)|$ and $\gamma_p(F_2) \leq |S \cap V(F_2)|$. So $\gamma_p(F_1) + \gamma_p(F_2) \leq |S \cap V(F_1)| + |S \cap V(F_2)| = |S| = \gamma_p(T)$. Therefore, $\gamma_p(T) = \gamma_p(F_1) + \gamma_p(F_2)$.

Since $\gamma_p(F_1) < \gamma_p(F_1 - (\{v_2v_3\} \cup E_3)), \ \gamma_p(T) = \gamma_p(F_1) + \gamma_p(F_2) < \gamma_p(F_1 - (\{v_2v_3\} \cup E_3)) + \gamma_p(F_2).$ Thus, $\gamma_p(T) < \gamma_p(T - (\{v_2v_3, v_3v_4\} \cup E_3)).$ Hence, $b_p(T) \le 2 + |E_3|.$

It is easy to see that for any tree T, if $b_p(T) \ge 2$, then $diam(T) \ge 4$.

Theorem 2.6 Let T be a uniformly pair-bonded tree with $b_p(T) = k \geq 2$. Let T_1 and T_2 denote the two components of $T - v_2 v_3$, where $v_2 \in V(T_1)$ and $v_3 \in V(T_2)$. Then T_2 is a uniformly pair-bonded tree with $b_p(T_2) = k - 1$.

Proof: Since $b_p(T)=k$, it follows that $\gamma_p(T-v_2v_3)=\gamma_p(T)$. So, $\gamma_p(T_1)+\gamma_p(T_2)=\gamma_p(T)$. For any edge set $E\subseteq E(T_2)$ with |E|=k-1 and $\delta(T_2-E)\ge 1$, $\gamma_p(T-E-v_2v_3)>\gamma_p(T)$. So $\gamma_p(T_1)+\gamma_p(T_2-E)>\gamma_p(T_1)+\gamma_p(T_2)$. Hence $\gamma_p(T_2-E)>\gamma_p(T_2)$. So $b_p(T_2)\le k-1$. If there exists an edge set $E'\subseteq E(T_2)$ with |E'|< k-1, $\delta(T_2-E')\ge 1$ and $\gamma_p(T_2-E')>\gamma_p(T_2)$, then $\gamma_p(T_1)+\gamma_p(T_2-E')>\gamma_p(T_1)+\gamma_p(T_2)=\gamma_p(T-v_2v_3)$. That is, $\gamma_p(T-E'-v_2v_3)>\gamma_p(T-v_2v_3)=\gamma_p(T)$. Hence $b_p(T)\le k-1$, which is a contradiction. Hence, T_2 is a uniformly pair-bonded tree with $b_p(T_2)=k-1$.

Let $K_{1,r}$ denote a star with r leaves. The vertex of $K_{1,r}$ with degree r is called the *central vertex*. Let S(k,l) be obtained from stars $K_{1,k}$ and $K_{1,l}$ by joining an edge between the central vertices. S(k,l) is called a *double star*. By Corollary 2.2, we have the following result.

Theorem 2.7 Let T be a tree with $b_p(T) = 1$. Then T is a uniformly pair-bonded tree if and only if T is a double star.

In the following, we define two operations on T when T is either a star or a double star.

- Operation 1: If T is a star, we attach to each vertex of T at least one leaf.
- Operation 2: If T is a double star, we attach to each leaf of T at least one leaf.

Let τ_1 be the family of all trees obtained from stars by Operation 1, and let τ_2 be the family of all trees obtained from double stars by Operation 2.

Theorem 2.8 Suppose that T is obtained from the star $K_{1,r}$ by Operation 1. Then T is a uniformly pair-bonded tree with $b_p(T) = r$.

Proof: Let E denote the edge set of star $K_{1,r}$. It is obvious that $\gamma_p(T) = 2r$ and $\gamma_p(T-E) = 2r+2$. So, we have $b_p(T) \le r$. For any $E' \subset E$, we have $\gamma_p(T-E') = \gamma_p(T)$. Hence, $b_p(T) = r$. Since E is the unique set of edges of T such that |E| = r and $\delta(T-E) \ge 1$, T is a uniformly pair-bonded tree.

Theorem 2.9 Suppose that T is obtained from the double star S(r,s) by Operation 2. Then T is a uniformly pair-bonded tree with $b_p(T) = r + s$.

Proof: Suppose that u and v are the central vertices of the double star S(r,s). Let E denote the edge set of the double star S(r,s). It is easy to prove that $\gamma_p(T)=2r+2s$ and $\gamma_p(T-E+uv)=2r+2s+2$. So, $b_p(T) \leq r+s$. For any $E' \subset E$ with |E'|<|E|-1 and $\delta(T-E') \geq 1$, we have $\gamma_p(T-E')=\gamma_p(T)$. Hence, $b_p(T)=r+s$. Since $E\setminus\{uv\}$ is the unique set of edges such that $|E\setminus\{uv\}|=r+s$ and $\delta(T-E+uv)\geq 1$, T is a uniformly pair-bonded tree.

Theorem 2.10 If T is a uniformly pair-bonded tree, then T is a double star or $T \in \tau_1 \cup \tau_2$.

Proof: We shall prove the theorem by induction on $b_p(T)$. If T is a uniformly pair-bonded tree with $b_p(T) = 1$, by Theorem 2.7, T is a double star.

Suppose that T is a uniformly pair-bonded tree with $b_p(T)=2$. Let $v_1v_2v_3v_4\cdots v_t$ be a longest path of T. We write v_2v_3 as e. Let T_1 and T_2 be the two components of T-e, where $v_2\in V(T_1)$ and $v_3\in V(T_2)$. Then T_1 is a star with the central vertex v_2 . By Theorem 2.6, T_2 is a uniformly pair-bonded tree with $b_p(T_2)=1$. By Theorem 2.7, T_2 is a double star.

Let u and v denote the central vertices of T_2 . By symmetry, we may assume that $v_3 \in N_{T_2}[v] \setminus \{u\}$. Suppose that $v_3 = v$. Then T is obtained from the star $K_{1,2}$ by Operation 1. Hence, $T \in \tau_1$. Suppose that $v_3 \in N_{T_2}(v) \setminus \{u\}$. If $|N(v) \cap L(T_2)| \geq 2$, then $b_p(T) = 1$, which yields a contradiction. Thus $|N(v) \cap L(T_2)| = 1$. Then T is obtained from the double star S(1,1) by Operation 2. Hence, $T \in \tau_2$. Therefore, $T \in \tau_1 \cup \tau_2$.

For $k \geq 3$, we assume that if T' is a uniformly pair-bonded tree with $b_p(T') = k - 1$, then $T' \in \tau_1 \cup \tau_2$.

Now, let T be a uniformly pair-bonded tree with $b_p(T)=k$. Let $v_1v_2v_3v_4\cdots v_t$ be a longest path of T. We write $e=v_2v_3$. Let T_1 and T_2 be the two components of T-e, where $v_2\in V(T_1)$ and $v_3\in V(T_2)$. Then T_1 is a star with the central vertex v_2 . By Theorem 2.6, T_2 is a uniformly pair-bonded tree with $b_p(T_2)=k-1$. By the induction assumption, $T_2\in \tau_1\cup \tau_2$. We will show in the following that in each of the cases $T_2\in \tau_1$ and $T_2\in \tau_2$, $T\in \tau_1\cup \tau_2$.

Case 1: Suppose $T_2 \in \tau_1$. Since $b_p(T_2) = k - 1$, T_2 is obtained from a star $K_{1,k-1}$ by Operation 1. Let E denote the set of edges of $K_{1,k-1}$, and let c be the central vertex of the star. Then we consider the following four subcases.

Subcase 1: Suppose $v_3 \in N_{T_2}(c) \cap L(T_2)$. If $|N_{T_2}(c) \cap L(T_2)| \geq 2$, then $\gamma_p(T) = 2k$. It is easy to see that $\gamma_p(T-E) > \gamma_p(T)$. Hence, $b_p(T) \leq |E| = k-1$, which is a contradiction. Since $N_{T_2}(c) \cap L(T_2) = \{v_3\}$, T is a tree obtained from the double star S(k-1,1) by Operation 2. Hence, $T \in \tau_2$.

- **Subcase 2:** Suppose $v_3 \in N_{T_2}(c) \setminus L(T_2)$. Then $v_1v_2v_3cu_1u_2$ is a longest path of T, for some $u_1, u_2 \in V(T_2)$. Applying Lemma 2.5 to this path, we have $b_p(T) \leq 2 + 0 = 2$. It is a contradiction.
- Subcase 3: Suppose $v_3 \in L(T_2) \setminus N_{T_2}(c)$. Then $v_1v_2v_3u_3cu_4u_5$ is a longest path of T, for some $u_3, u_4, u_5 \in V(T_2)$. If $|N_{T_2}(u_3) \cap L(T_2)| \geq 2$, then $\gamma_p(T-E) = 2k+2 > \gamma_p(T)$. Hence, $b_p(T) \leq |E| = k-1$, which is a contradiction. If $|N_{T_2}(u_3) \cap L(T_2)| = 1$, by Lemma 2.4, it follows that $b_p(T) \leq 1+0+1=2$. It is a contradiction.
- Subcase 4: Suppose $v_3 = c$. Then T is obtained from the star $K_{1,k}$ by Operation 1. Hence $T \in \tau_1$.

Combining all the subcases, we have, in Case 1, that $T \in \tau_1 \cup \tau_2$.

Case 2: Suppose $T_2 \in \tau_2$. Since $b_p(T_2) = k-1$, T_2 is obtained from a double star S(s,t) by Operation 2, where s+t=k-1. Let c_1 and c_2 be the central vertices of the double star. Let T_3 be the component of $T_2 - c_1c_2$ containing c_1 . Without loss of generality, we may assume that $\deg_{T_3}(c_1) = s$. Since $v_3 \in V(T_2)$, by symmetry we may assume that $v_3 \in V(T_3)$. Hence we have the following two subcases.

- **Subcase 1:** Suppose $v_3 = c_1$. Then T is obtained from a double star S(s+1,t) by Operation 2. Hence, $T \in \tau_2$.
- **Subcase 2:** Suppose $v_3 \neq c_1$. Then either $w_3w_2c_2c_1w_1v_3v_2v_1$ or $w_3w_2c_2c_1v_3v_2v_1$ is a longest path of T, for some $w_1, w_2, w_3 \in V(T_2)$, depending on v_3 being a leaf of T_2 or not. Applying Lemma 2.4 to this path, we have $b_p(T) \leq 1 + (t-1) + s = k-1$. It is a contradiction.

Therefore, in Case 2, we also have that $T \in \tau_1 \cup \tau_2$. \square By Theorems 2.7 to 2.10, we obtain the following corollary.

Corollary 2.11 T is a uniformly pair-bonded tree if and only if T is a double star or $T \in \tau_1 \cup \tau_2$.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, 1976.
- [2] O. Favaron, M.A. Henning, Paired-domination in claw-free cubic graphs, *Graphs and Combin.*, **20** (2004), 447-456.

- [3] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, The bondage number of a graph, *Discrete Math.*, 86 (1990), 47-57.
- [4] B. L. Hartnell, D.F. Rall, A bound on the size of a graph with given order and bondage number, *Discrete Math.* 197-198 (1999), 409-413.
- [5] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks, 32 (1998), 199-206.
- [6] L. Kang, J. Yuan, Bondage number of planar graphs, Discrete Math., 222 (2000), 191-198.
- [7] J. Raczek, Paired bondage in trees, *Discrete Math.*, 308 (2008), 5570-5575.
- [8] H. Qiao, L. Kang, M. Cardei, D-Z. Du, Paired-domination of trees, J. Global Optim., 25 (2003), 43-54.