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Abstract

Let G = (V(G), E(G)) be a graph with 6§(G) > 1. A set D C
V(G) is a paired-dominating set if D is a dominating set and the
induced subgraph G[D] contains a perfect matching. The paired
domination number of G, denoted by +,(G), is the minimum cardi-
nality of a paired-dominating set of G. The paired bondage number,
denoted by b,(G), is the minimum cardinality among all sets of edges
E' C E such that §(G — E’) > 1 and 7,(G — E’) > ~,(G). For any
bp(G) edges E' C E with 6(G— E’) > 1, if %(G — E’) > 7,(G), then
G is called uniformly pair-bonded graph. In this paper, we prove that
there exists uniformly pair-bonded tree T with b,(T) = k for any pos-
itive integer k. Furthermore, we give a constructive characterization
of uniformly pair-bonded trees.
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1 Introduction

In this paper, we consider finite undirected simple connected graphs.
For all undefined concepts and notations in this paper the reader is referred
to [1]. By V(G) and E(G), we mean the vertex set and the edge set of a
graph G, respectively. Let n(G) = |[V(G)| and m(G) = |E(G)|. We write
G|S] for the subgraph of G induced by S C V(G).
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A set § C V(G) is a dominating set of G if each vertex of V(G) \ §
is adjacent to at least one vertex in S. The cardinality of a minimum
dominating set is called the domination number of G, denoted by ¥(G).

The bondage number b(G) of a nonempty graph G is the minimum cardi-
nality among all sets of edges E’ C E for which 7(G—E’) > 4(G). Bondage
in graphs was introduced by Fink et al. [3] and further studied for example
in [4, 6].

A graph is called uniformly bonded, which was introduced by Hartnell
and Rall in [4], if it has bondage number b and the deletion of any b edges
results in a graph with increased domination number. Let P, and C,
denote a path and a cycle with n vertices, respectively. Hartnell and Rall
[4) obtained the following result.

Theorem 1.1 The uniformly bonded graphs with b(G) = 2 are C3 and P;.
The unique uniformly bonded graph with b(G) = 3 is Cy. There are no
uniformly bonded graphs with b(G) > 3.

A dominating set S is called a paired-dominating set if its induced sub-
graph contains a perfect matching. The cardinality of a minimum paired-
dominating set is the paired-domination number, denoted by 7v,(G). The
paired-domination number was introduced by Haynes and Slater [5] and
further studied in (7, 2, 8]. A minimum paired-dominating set of G is also
called a ~yp-set of G.

The paired bondage number of G with §(G) > 1, denoted by b,(G),
is the minimum cardinality among all sets of edges E’ C E such that
8(G — E') > 1 and v,(G — E') > 7p(G). In particuler, it was defined
that by(K1,») = O for all star graphs K1,,. The paired bondage number
was introduced by Raczek in [7]. A graph is called uniformly pair-bonded
if it has paired bondage number b,(G), and for any subset E' C E with
8(G — E') > 1 and |E’| = bp(G), the deletion of E' results in a graph with
increased paired-domination number. Raczek [7] obtained the following
result.

Theorem 1.2 For any non-negative integer k, there exists a tree with
bp(T) = k.

2 Main results

In this paper, we prove that there exists a uniformly pair-bonded tree
T with b,(T) = k for any positive integer k. Furthermore, we give a
constructive characterization of uniformly pair-bonded trees.

Theorem 2.1 Let G be a uniformly pair-bonded graph. Then by(G) >
m(G) — n(G) + 2.
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Proof: Let S be a y,-set of G, and let E(S,V \ S) denote the set of edges
between S and V' \ S. Define E; C E(S,V \ S) such that for each vertex
v €V - S, v is incident with exactly one edge of Ey. So |[Ey| = [V \ S| =

7 = 1(G).

Let E; = E(S,V \ S)\ E1. Then |E(S,V\ S)| = |E\| + |Ez|. Let M
be a perfect matching of G[S] and E3 = E(G[S]) \ M. Then |E(G[S])| =
|M| + |E3) = 1§l + |E3|. By definition, we have

S d) = 2@V \ S|+ |E(S,V \ ) = 2AE(GIV\ S| + |1l + ||
veV\S
and
3 d(w) = 2AB(GIS)I + |E(S, V\ 5)| = 22 4 Byl + x| + |l

vES

Combining the above equalities, we have m(G) = |E(G[V \ S| + L‘;ﬂ +
|Er| + |E2| + | E3]. So,

|E(GIV \ S))| + |Ez| + |Bs| = m(G) — |Ey| - __‘ngG),
Thus,
|E(GIV\ S]) U B2 U E3| = m(G) — n(G) + 1@,

.For any edge set E C E(G[V \ S]) U E; U E3, we have (G — E) > 1 and
¥p(G = E) < 7p(G)- Since G is a uniformly pair-bonded graph, b,(G) >
|E(G[V \ 5]) U B3 U B3| = m(G) — n(G) + 22, |

Corollary 2.2 Let T be a uniformly pair-bonded tree. Then
bp(T) > ﬁgﬂ -1

Let G be a graph. The open neighborhood of v € V(G) in G, denoted
by Ng(v), is the set {u € V(G) | uwv € E(G)}. The closed neighborhood of
v in G, denoted by Ng[v), is the set Ng(v) U {v}. The vertex v is a leaf if
[Ne(v)] = 1. If v is adjacent to a leaf, v is called a support vertex.

For any tree T, let L(T') denote the set of leaves of T'. If diam(T) > 4,
let P = v vov3vs -+ - vy be a longest path in T. Define the edge sets E3 =
{uvs | v € Np(v3), u ¢ {vo,v4} UL(T)} and E; = {uvy | v € Np(vq), u ¢
{va} U L(T)}. (We shall keep these notations up to the end of the proof of
Theorem 2.6).
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Proposition 2.8 Let T be a tree with diam(T) > 4. Suppose that v3 is
not a support verter and vy is a support vertex. Let F = T — vavy. Let
F, and F, denote the components of F containing vs and vy, respectively.
Then by(T) < 1+ bp(F2).

Proof: Let E be a minimum edge set of F, such that §(F; — E) > 1 and
v5(F2 = E) > vp(F2). It is obvious that 1p(T) < Yp(F1) + 1p(F2). So,
%(T) < 1(F1) + p(F2) < %(F1) + vp(F2 = E) = (T — ({vsvs} U E)).
Hence by(T) < 1+ by(F2). ]

Lemma 2.4 Let T be a tree with diam(T) > 5. If vs is not a support
vertez, then by(T) < 1+ |Es| + |E4].

Proof: Let F = T'—({vov3s}JUE3UE,). Then F has no isolated vertices. Let
F, and F, denote the components of F' containing vz and v3, respectively.
Define F3 = F — (F} U F3). It is obvious that

Yo(T) € 7p(FL U Fa U {v2v3}) + 7p(F3) = 2 + 7,(F3)
< 4+ (F3) = 7p(F1) + 1p(F2) + 7p(F3) = 1p(F)
= 7p(T — ({vova} U E3 U Ey)).

Hence b,(T) < 1+ |E3| + |E4l. 0

Lemma 2.5 Let T be a tree with diam(T) > 4. If both vz and vy are
support vertices, then by(T) < 2 + |Es|.

Proof: Let F = T — vsus. Then F has no isolated vertices. Let F} and
F, denote the components of F containing vs and vy, respectively. It is
obvious that 7,(T) < Y(F1) + ¥p(F2). Let S be a yp-set of T, and let M
be a perfect matching of T'[S]. Since v2,v3 and vy are support vertices of
T, it follows that ve,vs3,v4 € S.

If vgvy € M, then there exists a vertex u € N(v2) N L(T) such that
uvy € M. Say v € N(vg) N L(T). Thenv ¢ S. Let §' = (S\ {u}) U {v}.
Then §' is a y,-set of T and v3vs does not belong to any perfect matching
of T[S’]. So, without loss of generality, we may assume that vzvs é M.
Then S NV (F;) and SN V(F3) are paired-dominating sets of ] and F,
respectively. Hence, 7p(F1) < |S N V(F1)| and 7p(F2) < |SNV(F3)|. So
(F1) +7(F2) < ISNV(F)| +1SnV(F)| = |S| = 7(T). Therefore,
1p(T) = %(F1) + Yo(F2).

Since Y(F1) < Yp(F1 — ({v2vs} U E3)), %(T) = 1p(F1) + 1p(F2) <
'Yp(Fl - ({'Uz'va} UE3)) +')’,,(F2). Thus, 'Yp(T) < “/p(T— ({‘02'03, ’03‘04}UE3)).
Hence, by(T) < 2+ |E3|. O

It is easy to see that for any tree T, if b,(T) > 2, then diam(T) 2 4.
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Theorem 2.6 Let T be a uniformly pair-bonded tree with by(T) = k > 2.
Let Ty and T denote the two components of T—vqus, where v, € V(T}) and
v3 € V(T3). Then T; is a uniformly pair-bonded tree with b,(T3) = k — 1.

Proof: Since by(T') = k, it follows that vp(T — vav3) = 7,(T). So, vp(T1) +
Yp(T2) = 7(T). For any edge set E C E(T}) with |[E| = k — 1 and
6(To — E) 2 1, vp(T = E - vav3) > 7p(T). So %(Th) + (T2 — E) >
¥p(T1) + 1p(T2). Hence (T2 — E) > vp(T2). So by(T2) < k — 1. If there
exists an edge set E' C E(Tp) with |[E'| < k-1, §(To — E’) > 1 and
Y(T2 = E') > 7p(T2), then (T1) + 1(T2 — E') > (Th) + 1(T2) =
Yp(T — vovs). That is, 7,(T — E' — vaus) > %,(T — vavs) = v,(T). Hence
bp(T) < k — 1, which is a contradiction. Hence, T, is a uniformly pair-
bonded tree with b,(T2) =k — 1. O

Let K r denote a star with r leaves. The vertex of K , with degree r is
called the central vertez. Let S(k,l) be obtained from stars K 1,k and K
by joining an edge between the central vertices. S(k,l) is called a double
star. By Corollary 2.2, we have the following result.

Theorem 2.7 Let T be a tree with b,(T) = 1. Then T is a uniformly
pair-bonded tree if and only if T is a double star.

In the following, we define two operations on T' when T is either a star
or a double star.

e Operation 1: If T is a star, we attach to each vertex of T at least
one leaf.

e Operation 2: If T is a double star, we attach to each leaf of T at
least one leaf.

Let 71 be the family of all trees obtained from stars by Operation 1, and
let 72 be the family of all trees obtained from double stars by Operation 2.

Theorem 2.8 Suppose that T is obtained from the star K, , by Operation
1. Then T is a uniformly pair-bonded tree with b,(T) =r.

Proof: Let E denote the edge set of star K .. It is obvious that v, (T") = 2r
and 7,(T — E) = 2r + 2. So, we have b,(T) < r. For any E’ C E, we have
Yp(T — E’) = 7p(T). Hence, b,(T) = r. Since E is the unique set of edges
of T such that |E| = r and §(T — E) > 1, T is a uniformly pair-bonded
tree. ]

Theorem 2.9 Suppose that T is obtained from the double star S(r,s) by
Operation 2. Then T is a uniformly pair-bonded tree with b,(T) = r + s.
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Proof: Suppose that u and v are the central vertices of the double star
S(r,s). Let E denote the edge set of the double star S(r,s). It is easy
to prove that ¥,(T) = 2r + 28 and 7,(T — E +wv) = 2r + 2s + 2. So,
by(T) < r +s. For any E' C E with |E'| < |E| -1 and §(T - EY > 1,
we have v,(T — E') = ,(T). Hence, by(T) = 7 + 5. Since E'\ {uv} is the
unique set of edges such that |[E\ {uv}| =r+sand 6(T-E+w)>21,T
is a uniformly pair-bonded tree. a

Theorem 2.10 If T is a uniformly pair-bonded tree, then T is a double
starorT € UT.

Proof: We shall prove the theorem by induction on b,(T). If T is a
uniformly pair-bonded tree with b,(T") = 1, by Theorem 2.7, T is a double
star.
Suppose that T is a uniformly pair-bonded tree with b,(T) = 2. Let
V1v2V3v4 - - - U be a longest path of T. We write vous as e. Let T} and T
be the two components of T' — e, where v2 € V(T1) and v3 € V(T2). Then
T, is a star with the central vertex vo. By Theorem 2.6, T> is a uniformly
pair-bonded tree with b,(T2) = 1. By Theorem 2.7, T3 is a double star.

Let u and v denote the central vertices of To. By symmetry, we may
assume that v3 € Np,[v] \ {u}. Suppose that v3 = v. Then T is ob-
tained from the star K, o by Operation 1. Hence, T € 7;. Suppose that
v3 € Np,(v) \ {u}. If |N(v) N L(T2)| > 2, then by(T) = 1, which yields
a contradiction. Thus |N(v) N L(T2)| = 1. Then T is obtained from the
double star S(1,1) by Operation 2. Hence, T € 7o. Therefore, T € 71 U 2.

For k > 3, we assume that if 7" is a uniformly pair-bonded tree with
bp(T')=k—1,thenT' €y UT.

Now, let T be a uniformly pair-bonded tree with b,(T) = k. Let
v UgU3, - - vy be a longest path of T. We write e = vouz. Let 77 and
T, be the two components of T — e, where v; € V(T1) and vz € V(T3).
Then T, is a star with the central vertex va. By Theorem 2.6, T3 is a uni-
formly pair-bonded tree with b,(T2) = k— 1. By the induction assumption,
T, € 11 UTe. We will show in the following that in each of the cases T € 7
andTh €, TENM UTe.
Case 1: Suppose Tp € ;. Since by(T2) = k — 1, T3 is obtained from a
star K; x—1 by Operation 1. Let E denote the set of edges of K k-1, and
let ¢ be the central vertex of the star. Then we consider the following four
subcases. '

Subcase 1: Suppose vs € Np,(c) N L(T2). If |Np,(c) N L(T2)| = 2, then
7p(T) = 2k. It is easy to see that v,(T — E) > »(T). Hence,
by(T) < |E| = k — 1, which is a contradiction. Since Nz,(c)N
L(Tz) = {vs}, T is a tree obtained from the double star S(k—
1,1) by Operation 2. Hence, T € 7.
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Subcase 2: Suppose vs € Nr,(c) \ L(T2). Then vjvauscuyus is a longest
path of T', for some u;,uy € V(T3). Applying Lemma 2.5 to
this path, we have b,(T) <2+ 0 = 2. It is a contradiction.

Subcase 3: Suppose v3 € L(T3)\ N1, (c). Then vivavsuscuqus is a longest
path of T for some u3, us, us € V(T3). If |Nr, (us) N L(T3)| >
2, then (T — E) = 2k + 2 > +,(T). Hence, b,(T) < |E| =
k — 1, which is a contradiction. If |Ng,(us) N L(T2)| = 1, by
Lemma 2.4, it follows that b,(T) < 1+0+1=2. Itisa
contradiction.

Subcase 4: Suppose v3 = ¢. Then T is obtained from the star K; ; by
Operation 1. Hence T € 7;.

Combining all the subcases, we have, in Case 1, that 7' € 7, U 7.

Case 2: Suppose T € 7. Since by(T2) = k — 1, T} is obtained from
a double star S(s,t) by Operation 2, where s +¢ = k — 1. Let ¢; and
c2 be the central vertices of the double star. Let T3 be the component
of T, — ¢jcp containing ¢;. Without loss of generality, we may assume
that degr,(c1) = s. Since v3 € V(T3), by symmetry we may assume that
vz € V(T3). Hence we have the following two subcases.

Subcase 1: Suppose v3 = ¢;. Then T is obtained from a double star
S(s + 1,t) by Operation 2. Hence, T € 7.

Subcase 2: Suppose vs # c¢;. Then either wswacoc;wivavavy or
WawaCoC V3V is a longest path of T', for some wy, wo, w3 €
V(T3), depending on vs being a leaf of T> or not. Applying
Lemma 2.4 to this path, we have b,(T) < 1+ (t—1)+s = k—1.
It is a contradiction.

Therefore, in Case 2, we also have that T € 7, U 7. a
By Theorems 2.7 to 2.10, we obtain the following corollary.

Corollary 2.11 T is a uniformly pair-bonded tree if and only if T is a
double star or T € 7, U 7s.

References

(1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
Macmillan, 1976.

[2] O. Favaron, M.A. Henning, Paired-domination in claw-free cubic
graphs, Graphs and Combin., 20 (2004), 447-456.

77



[3] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, The bondage num-
ber of a graph, Discrete Math., 86 (1990), 47-57.

{4] B. L. Hartnell, D.F. Rall, A bound on the size of a graph with given
order and bondage number, Discrete Math. 197-198 (1999), 409-413.

[5] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks, 32
(1998), 199-206.

[6] L. Kang, J. Yuan, Bondage number of planar graphs, Discrete Math.,
222 (2000), 191-198.

(7] J. Raczek, Paired bondage in trees, Discrete Math., 308 (2008), 5570-
5575.

(8] H. Qiao, L. Kang, M. Cardei, D-Z. Du, Paired-domination of trees, J.
Global Optim., 25 (2003), 43-54.

78



