ON THE POSSIBLE AUTOMORPHISMS OF A 3-(16,7,5) DESIGN
ZIBA ESLAMI

ABSTRACT. The existence question for a 3-(16,7,5) design is open. In this
paper, we examine possible automorphisms of this design. We consider a min-
imum subset of basic permutations consisting of cycles of prime length p and
prove that if a 3-(16,7,5) design exists, then it is either rigid or admits basic
automorphisms with cycles of length 2 or 3.

1. INTRODUCTION

For positive integers 1 <t <k <v,letX = {1,2,...,v}, Sx denote the symmet-
ric group on the elements of X, (¥) the set of all k-subsets of X and 2% the power
set of X. The elements of X and () are called points and blocks , respectively. If
6 €Sx,x€X, Be (%), and B C 2%, we denote by o(x), 6(B), and 0(HB) the
images under o of x, B, %, respectively.

A t-(v,k,A) design, or briefly a t-design, is a pair (X, %) where 8 C (§), so
that for every T € () , |{B € B|T C B}| = A. A t-design is simple if no two
blocks are identical. In this paper, we consider only simple designs. (X, (’,f)) is
called the complete design.

For a set of blocks # C ({) and 6 € Sx , let 0 act on #. Then 6(%) is an
isomorphic copy of . If further, 0(%) = %, then 0 is called an automorphism
of 2. If G is a subgroup of Sy such that 6(%) = % for every o € G, we say
that & is G-invariant. The set of all automorphisms of % forms a group, denoted
by Aut %8 and called the full Automorphism group of (X,%B). B is called rigid if
its automorphism group is trivial. We also recall the notion of the normalizer of
a group G in a bigger group H as the subgroup of H consisting of all elements
8 € H suchthat g~'Gg =G.

Let (X, %) be at-(v,k,A) design and consider the set W C X with |W|=w <.

Let X' = X\W and &' = {B\W : B€ #,W C B}. Then (X', %#') is a (¢t — w)-
(v—w,k—w, 1) design called the derived design with respect to W.
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In order to tackle existence/classification problems for designs, it is often pos-
sible to devise techniques for extending smaller designs into larger designs. These
approaches may lead to the construction of previously unknown design, or in some
cases even to a complete classification of larger designs. A good example of this
is [13], where to prove the non-existence of 4-(12,6,6) designs, the authors made
use of the classification of the smaller 3-(10,4,3) and 4-(11,5,3) simple designs.
For examples of classification achieved through extension, the reader is referred
to [4, 5, 8, 7]. In this paper, we pursue the same approach.

The family of 3-(16,7,5) designs is of interest mainly because the existence
question for this class is still open. Even for the derived 2-(15,6,5) designs, only
a lower bound of 117 is given in [11]. In this paper, we first consider the derived
family of 2-(15,6,5) designs and improve the existing bound to 1454 which con-
tains the complete catalogue of 2-(15,6,5) designs admitting automorphisms of
order at least 5. Then we consider possible extension of these designs. For a per-
mutation 7 of prime order p which consists of m disjoint cycles of length p, we
say that 7 is of basic type p™. Therefore, this approach excludes the existence of
a3-(16,7,5) design with automorphisms of basic types p™ with p € {5,7,11,13}
and m a positive integer such that pm < 16. In other words, we prove that if a
3-(16,7,5) design exists, then it is either rigid or admits automorphisms of basic
type 2™ and 3. To accomplish this, we employ, with slight modifications, the al-
gorithm presented in [3]. For the sake of completeness, in section 2, we cite from
[3] the algorithm , which is an exhaustive technique based on backtracking on the
solutions of a matrix-system which generates G-invariant designs with efficient
rejection of isomorphic sub-configurations. Using this algorithm, we consider in
section 3, the family of 2-(15,6,5) designs with a nontrivial automorphism group
and possible extensions of the results.

2. THE ALGORITHM

For a subgroup G of Sx, let (X, %) be a G-invariant t-(v,k,A) design. Let
1,72, ..,Tm a4 K{,K,...,K, be the orbits of (}) and (X) under the action of
G, respectively. Define the m x n matrix A(G|X) whose (i, j)th entry is |{K €
Kj|T C K}|, where T is any representative in 7;. It is known [9] that there exists a
G-invariant ¢-(v,k,A) design (X, %) if and only if there exists a vectoru € {0,1}"
satisfying the equation

AGIX)u=2jn ™
where jy, is the m-dimensional all-one vector. Note that u is indeed the vector
representation of (X, 48), i.e., uis a column vector whose rows are indexed by the
elements of the orbits of (’,5) such that u; = 1 if and only if & contains the i-th

orbit of (¥).

Now, since finding a G-invariant t-design can be reduced to solving a matrix
problem, it is important to devise an efficient procedure for solving this system.
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In this respect, the role of backtracking is widely recognized [1, 2, 6, 10, 14). In
backtracking, series of partial feasible solutions are constructed one step at a time
in an orderly fashion. At each step, we test to see if a partially constructed solution
has any chance to be extended. If not, we immediately reject the partial solution
and go to the next one, thereby saving the effort of constructing the descendants
of a clearly unsuitable partial vector. The key to the success of backtracking lies
in how we restrict the number of candidates for extension, especially at the earlier
steps of the process.

We define the following ordering on the solutions of the system A(G|X)u =
Ajm, ie., G-invariant 1-(v,k,A) designs. Letu = {w;}7_, and w’ = {u{}7_, be two
such solutions, and let j be the smallest value for which u; # u}. Whichever of
the solutions contain a 1 in this position is defined to be the smaller of the two.
The algorithm initially constructs the smallest possible solution and then proceeds
to exhaustively generate a sequence of solutions in strictly increasing order. This
ordering can be used to cut down on the number of solutions the algorithm has to
deal with, as follows. Let u; represent a partial design validly constructed on the
first i orbits, i < n. If there exists another partial solution which is both isomorphic
to and less than ;, it would have already been considered at some point earlier in
the enumeration and there is no point in examining u; or its possible extensions
any further. However, if no such configuration exists, the partial solution has to
be extended to the next level, i+ 1. We are therefore interested in partial solutions
for which no smaller isomorphic configuration exists.

For a given isomorphism class, ¥, the smallest t-design belonging to ¥ is said
to be the canonical representative of its class, and the design itself is said to be
in canonical form. The aim of the isomorph rejection technique is to reduce the
number of partial solutions through collapsing thé ones which are not in canonical
form. Obviously, if a partial solution u; is in canonical form and j < i, then u j is
also canonical. However, if u; is not in canonical form, then any solution extended
from v; is not canonical either. The following lemma [3] shows how we can re-
strict the elements of Sy that are to be considered to detect if a smaller isomorphic
copy of a partial solution exists.

Lemma 2.1. Let (X,%) be a t-(v,k,A) design with a nontrivial automorphism
7, ie, B(#) = B. If 6 € N((m)) , then o(B) admits  as an automorphism.
Further, if (()) is the full automorphism group of (X, %), then the converse is
also true,

Now, Suppose that we want to find t-(v,k,A) designs with a given automor-
phism 7 of prime order p . We backtrack on the solutions of the system (*) using

the approach presented in [5], and produce all partial solutions, i.e. partial designs,
up to some specified level (orbit) /. We then use isomorphism rejection based on
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the normalizers according to Lemma 2.1 to detect solutions which can not extend
to canonical form. To do so, we must apply elements of the normalizers of 7 in Sy
to the solutions and if a smaller copy is produced, we reject the solution. We then
extend the remaining partial solutions and if necessary (i.e., if there are many ex-
tensions) we also repeat this procedure for some other levels. Clearly, there might
still be isomorphic copies among complete solutions which have to be discarded.
Hence, we first reject isomorphisms under normalizers. Second we determine the
order of the full automorphism group of each of the remaining designs. Accord-
ing to Lemma 2.1, at this step any two designs with exactly p automorphisms are
non-isomorphic. Thus in the last step we concentrate on designs with more than
p automorphisms and extract non-isomorphic designs among them.

3. THE DERIVED 2-(15,6,5) DESIGNS

In [11] a lower bound of 117 is given for the number of 2-(15,6,5) designs. In
this section we improve this bound and consider possible automorphisms of this
class of designs.

Let 7 be an automorphism of a #-(v,k, ). Clearly, we can take a suitable power
of 7 of prime order p. If 7 consists of m disjoint cycles of length p, we say that 7
is of basic type p™. We first prove that for a 2-(15,6, 5) design , the types 13!, 11'
and 7! are infeasible.

Theorem 3.1. For a 2-(15,6,5) design, automorphisms of basic type 7', 11! and
13! are not possible.

Proof. Consider a 2-(15,6,5) design D = (X, %) with a nontrivial automorphism
7 of type 7!, 11! or 13!. Without loss of generality, we can take the points 1 and
2 as the fixed points of 7. Then blocks of D containing the pair {1,2} are fixed
by . Further, since A =5, then every such block must also be fixed by z. This
forces 7 to have at least 8 more fixed points, which is a contradiction in all three
cases. (]

For a 2-(15,6,5) design we have () = 5005 and (%)) = 105. If we assume an
automorphism 7 = (1) (2...8)(9...15) of type 72, the action of & on 2-subsets
of {1,2,...,15} produces 715 orbits. Here, using group actions alone does not
suffice to reduce the size of the problem. Hence, it is a challenging task to find
solutions of the system (*) of previous section for this class and we definitely
need an algorithm to do this. One approach to get round this problem is using
the derived designs to prune the search space, and then proceed according to the
algorithm presented in Section 2 to identify and reject derived solutions which can
not extend to canonical form.

Let D denote a 2-(15,6,5) design with automorphism 7 and.let D, be its de-
rived design with respect to the point 1. Therefore, 7 is an automorphism of D,
as well. According to Lemma 2.1, for each design D) and each ¢ € N((x})), there
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exists also o(D;) among solutions of (*) (i.e. designs admitting 7 as automor-
phism) which extend to o(D) and can therefore be discarded. Hence, we first
employ the method of [5] to solve the equation (*) to produce all candidates for
Dy. The action of 7 on the points of {1,2,...,14} has 286 orbits and there are
12,259 solutions for this step. In the next step, we use normalizers as in Lemma )
2.1 to delete additional copies of solutions and this results in 170 derived designs
which are canonical and are to be extended to a 2-(15,6,5). For the extension, we
note that already 286 orbits are dealt with and to determine the remaining orbits,
we proceed as before and obtain extensions of the derived designs which admit 7
as automorphism. Using nauty [12] to reject isomorphic copies we get:

Theorem 3.2. Up to isomorphism, the number of 2-(15,6,5) designs admitting
an automorphism of order 7 is as follows:

|Aut|  #Designs
7

66
14 4
21 8
42 2
336 1
total: 81

Examples of designs with 336 and 42 automorphisms are given in the Appen-

dix.
We now consider the type 5™ for m = 1,2,3. We prove first that m = 1 and

m =2 are impossible.

Theorem 3.3. For a 2-(15,6,5) design, automorphisms of basic type 5! and 5%
are not possible.

Proof. Consider a 2-(15,6,5) design D = (X, %) with nontrivial automorphism

n’=(f|)(f5) (a[...as)(%---al())

Let § consist of all 14 blocks of & containing fi. Since 51 14, at least 4 ele-
ments of § must be fixed by 7. However, at most 2 blocks of S can be of form
S101 0 03 054 055 and therefore the other two blocks must consist only of fixed
points f; which is not possible. For automorphism 6 = fi... fio (1 ... %), we
have one block of form f1%1% 73745 and need three blocks of fixed points which
is again impossible. 0O

We now consider 2-(15,6,5) design D = (X, %) admitting an automorphism
T = 010,03 of type 53, where 6; = (1+5i --- 5+5i),0 < i < 2. In this case, the
number of orbits for the action of 7 on 2-subsets of {1,2,...,15} equals 1001 and
we have to consider some modifications to the algorithm of Section 2 to categorize
this class. Hence we prefer to employ the properties of the normalizers of <
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7 > such that isomorphism test using normalizers can reject partially-completed
isomorphic solutions. The details of this approach is as follows.

Let I = {I;}1%! be the set of orbits of the blocks of D under the action of
< > and let IV = {I; : there exists a block B € I'; such that |[BN point(oy)| =
j,1<1<3},1<j<3. Clearly IV is a well defined subset of I" and we have
IT!| =6, |[?| = T3] = 60. Furthermore, for any ¢ € N(< 7 >), it holds that
o([V) =TV, Let u be the vector representation of D and permute the rows of u so
that the orbits of I'!, I'2, and I'? appear one group after another. We again consider
(*) where the columns of matrices are permuted accordingly and obtain all partial
solutions of length |T!|, |T| + |[2|, [T!| + %] + ||, and |, respectively. As
before, we can employ normalizers to reduce the number of solutions at each step.
Note that considering a different ordering of orbits for (*) is such that application
of Lemma 2.1 is more efficient. We can now proceed as before and the final re-
sults are as follows.

Theorem 3.4. Up to isomorphism, the number of 2-(15,6,5) designs invariant
under an automorphism of order 5 is as follows:

|Aut|  #Designs

5 1317
10 43
20 9
30 1
40 1
60 1
120 1
total:1373

Examples of designs with more than 40 automorphisms are given in the Ap-
pendix.

The remaining types, namely 3™ and 2™, can not be classified in reasonable
time with our algorithm. Therefore, we consider possible extension of the ob-
tained designs to 3-(16,7,5) designs. Let D denote a 3-(16,7,5) design which is
the extension of one of the cbtained 2-(15,6,5) designs, say D;. Hence, , we can
employ the method of [5] to solve the equation (*) to produce all candidates for
D where some of the elements of u are already determined by D;. The computa-
tional results show (in a few seconds, on a 3.4GHz Pentium 4 running a C program
) that none of the obtained designs extend to a 3-(16,7,5) design. This means that
a3-(16,7,5) design with automorphisms of basic types p™ with p € {5,7,11,13}
does not exist. Therefore, we have proved the following theorem.

Theorem 3.5. if a 3-(16,7,5) design exists, then it is either rigid or admits auto-
morphisms of basic types 2™ or 3™.
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APPENDIX

Examples of 2-(15, 6, 5) designs are given below.
The pointsetisV ={1,...,9,4,...,F}.

|Aut]|=40

12346B
137AEF
23457C
2679AD
39BCDF

1235AF
1479EF
2378CE
28BCEF
4567CF

12459E

148ACD
239ADF
346ABE
459ABE

ee—

1267BD
156ACF
2468BF
3489DF
46789F

1289CE
1578BD
247ACD
3568DE
4ABCDE

13458D

1689AC
2569DE
3579BC
S6CDEF

1369BC
17BDEF
258ABF
3678AE
5780AB

|Aut|=42

123469
13ABCE
235BDE
2689DF
3789BC

12358F
14568B
2379AE
268BCE
4579DF

12478E
14BCDF
237CDF
346CEF
4679AC

12567C

1S9CDE
2459BC
3489DE
467BDE

129ABD
16ADEF
245AEF
348ABF
S689AE

13457A
179BEF
248ACD
3569BF
578ABD

- 13678D

189ACF
267ABF
356ACD
578CEF

|Aut|=42

123469
13ABCE
2359AC
267ABF
378AEF

12358F
14568B
235BDE
268BCE
4579DF

12478E

14BCDF
237CDF
346ABD
457BCE

12567C

159CDE
245AEF
346CEF
4679AC

129ABD
16ADEF
2489BF
3489DE
S689AE

13457A
179BEF
248ACD
3569BF
568CDF

13678D
189ACF
2679DE
3789BC
578ABD

|Aut|=60

12346B
1379BF
23457C
2679AD
39BCDF

1235AF

147ADE
237ACF
28BCEF
456ABF

12459E
1489CF
2389DE
3468BD
4579CE

1269BE
1567BC
2467DF
349AEF
46789F

1278CD
158ADF
248ABC
3569CD
4ABCDE

13458D
1689AC
2568EF
3578BE
S6CDEF

136ACE
17BDEF
259ABD
3678AE
5789AB

|Aut|=120

123679
1357CF
23478A
2789CD
459BCD

1248BD
1358BE
2359CE
28ACEF
4678DE

1249CF
14579A
235ABD
345689
469AEF

12568A
1SACDE
237BEF
348BCF
47ABCE

126DEF
1678BC
2456BE
367ACD
567ABF

1346CE
179BDE
2457DF
369BDF
568CDF

134ADF
189ABF
269ABC
389ADE
S789EF
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1.

2.

3.

11.

12.

13.

14.

|Aut|=336

1234690 12358F 12478E  1256/C  129CEF 13457A  13678D
139ADF 14568B 149ABE 15ABCF 169BCD 17ACDE 18BDEF
2379BF 237ABD 237BCE 2459DE 245ABD 245CDF  2689AC
268ABD 268AEF 3489AC 348BCE 348CDF 3569DE  356AEF
356BCE 4679BF 467AEF 467CDF 5789AC 5789BF  5789DE
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